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Abstract

This article, excerpted from an ongoing doctoral research project, presents a visual approach to
the study of group homomorphisms using GeoGebra as a tool for construction and exploration.
Focusing on the classical homomorphism from the symmetric group S3 to the cyclic group Z2,
the study analyzes two distinct visual representations—one in 2D and the other in 3D. These con-
structions highlight fundamental algebraic properties such as kernel, image, and cosets, while
also illustrating the preservation of operations and offering an intuitive application of the First
Isomorphism Theorem.
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1 INTRODUCTION

The study of group homomorphisms examines mappings that preserve the algebraic structure of
groups, enabling an analysis of their properties and relationships (Gallian, 2016; Gonçalves, 1995).
Despite their theoretical relevance, homomorphisms often present high levels of abstraction that hin-
der intuitive understanding, especially among students and novice researchers.

This study is motivated by the need to enhance didactic approaches for teaching group structures
in abstract algebra, providing resources that support teachers in planning and conducting effective
lessons. In this context, visual resources such as dynamic software environments have shown poten-
tial to simplify abstract concepts, establish bridges between theoretical and concrete representations,
and support clear and systematic content exposition (Alves and Araújo, 2014; Alves, 2020; Sousa
et al., 2024b,a; Carter, 2009).

Recent studies have highlighted GeoGebra’s versatility in representing mathematical structures, in-
cluding permutation groups, symmetries, and relationships between finite groups and other algebraic
systems (Sousa et al., 2024b,a,c,d). Building on these contributions, this work proposes a didactic
strategy that associates homomorphism theory with dynamic visual representations using GeoGebra.
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The present article is intended for mathematics educators and teacher trainers seeking ways to make
abstract algebraic topics more accessible. By leveraging the interplay between theory and visual-
ization, we aim to enable the exploration of core concepts such as kernel, image, and cosets in a
guided and interactive manner, promoting both conceptual understanding and practical application in
the classroom.

2 GROUP HOMOMORPHISMS AND THEIR PROPERTIES

Definition 1 (Group Homomorphism). Let G and H be groups with binary operations ∗ and ·, re-
spectively. A function ϕ : G → H is called a group homomorphism if (Garcia and Lequain, 2015):

ϕ(a ∗ b) = ϕ(a) · ϕ(b) ∀a, b ∈ G

This implies that the operation in G is compatible with the operation in H under the action of ϕ,
preserving the algebraic structure. For a homomorphism between groups to exist, it must satisfy
some particular properties, which are:

• Preservation of the identity element: For any homomorphism ϕ : G → H , the identity element
of G, denoted here as eG, is mapped to the identity element of H , denoted analogously as eH ,
that is: ϕ(eG) = eH .

• Preservation of inverses: For any a ∈ G, we have:

ϕ(a−1) = ϕ(a)−1.

• Kernel and image: The kernel of a homomorphism ϕ is defined as:

kef(ϕ) = {x ∈ G | ϕ(x) = eH}

where the kernel is a normal subgroup of G. The image of ϕ is:

Im(ϕ) = {ϕ(x) | x ∈ G}

where the image is a subgroup of H .

The parity properties of a permutation and its signature are fundamental to understanding the
structure of the symmetric groups S3eS4 in the context of homomorphisms, as they allow the classi-
fication of permutations based on the number of transpositions (2-cycles) they comprise.

Definition 2 (Parity of a permutation). Let σ ∈ Sn be a permutation in the symmetric group of n
elements. We say that (Gallian, 2016):

(i) σ is an even permutation if it can be expressed as the product of an even number of trans-
positions. (ii) σ is an odd permutation if it can be expressed as the product of an odd number of
transpositions.

The classification of permutations as even or odd will be used to distinguish cosets in the study of the
homomorphisms addressed.
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Definition 3 (Signature of a permutation). Let σ ∈ Sn be a permutation represented by the corre-
spondence between the sets {1, 2, . . . , n} and {b1, b2, . . . , bn}. The signature of σ, denoted by sgn(σ),
is given by (see proof in Domingues and Iezzi, 2003):

sgn(σ) =
∏
i<j

ai − aj
bi − bj

where the product is calculated for all pairs (i, j) with i < j. This definition implies that: (i) The
signature of the identity permutation is 1. (ii) The signature of a transposition is −1.

The fundamental property of this definition is that it does not depend on the order of the columns
in the matrix representing σ. Moreover, the signature of a permutation is related to the parity of the
number of transpositions in its decomposition. If σ is an even permutation, sgn(σ) = 1; if σ is odd,
sgn(σ) = −1.

Theorem 4 (First Homomorphism Theorem). If ϕ : G → H is a group homomorphism, then the
quotient group G/ker(ϕ) is isomorphic to the image of ϕ, that is:

G/ker(ϕ) ∼= Im(ϕ)

The theorem establishes a fundamental relationship between the quotient group G/ker(ϕ), the kernel
ker(ϕ) and the image Im(ϕ), allowing us to understand the structure of G in relation to H (see the
proof in Gonçalves, 1995).

The First Isomorphism Theorem states that for a group homomorphism ϕ : G → H , the quotient
group G/ker(ϕ) is isomorphic to the image Im(ϕ). This means that the structure of the image can be
understood entirely in terms of the cosets of the kernel. This result plays a central role in our visual
constructions, as it allows us to interpret the geometric grouping of elements (e.g., in concentric cir-
cles) as representatives of cosets under this quotient structure.

The definition of group homomorphism and its properties underpins the visual construction and anal-
ysis of the examples in the following sections. The kernel, ker(ϕ), is defined as the set of domain
elements mapped to the codomain’s identity, while the image (Im(ϕ)) consists of elements reached
by the homomorphism. Structural operation preservation by homomorphisms has also been formally
established.

Parity and permutation signature concepts clarify the classification of elements in S3 and S4. Parity,
based on the number of transpositions, and the signature, represented by the homomorphism sgn :
Sn → Z2, distinguish even and odd permutations, organizing cosets relative to the kernel.

3 CONSTRUCTION IN GEOGEBRA: THE CASE ϕ : S3 → Z2

In this mapping, the symmetric group S3, of order 6, is mapped onto the cyclic group Z2, of order 2.
The parity of permutations defines the homomorphism:

• Even permutations {e, (123), (132)} are mapped to 0 ∈ Z2.
• Odd permutations {(12), (13), (23)} are mapped to 1 ∈ Z2.
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Regarding the mathematical interpretation of this homomorphism, we have:

(a) Parity of permutations: Even permutations have a signature of +1, while odd permutations have a
signature of −1. The homomorphism ϕ checks the parity and assigns:

ϕ(σ) =

{
0 if sgn(σ) = +1

1 if sgn(σ) = −1

(b) Preserved properties:
• The identity element e is mapped to the identity 0 ∈ Z2.

• The composition of two permutations preserves parity, reflected as addition in Z2 (mod 2).

The construction was implemented in GeoGebra using algebraic commands to assign colors and la-
bels to each permutation in S3, according to its parity. Functions such as Mod, If, SetColor, and
Text were applied to dynamically display the image of each element under the homomorphism ϕ,
allowing interactive visualization of kernel elements and cosets in the domain.

The visual representation of this mapping is presented in Figure 1.

Figure 1. Homomorphism ϕ : S3 → Z2.

In Figure 1, which shows the graphical representation in GeoGebra, it can be observed that colors are
used as follows: (a) red for elements mapped to 0, and (b) green for elements mapped to 1. Addition-
ally, arrows connect the elements of S3 to their respective values in Z2.

To construct this visual representation in GeoGebra, the following steps can be followed:
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1. Use the polygon tool to create a regular hexagon, representing the 6 elements of S3.

2. Label the vertices with the elements e, (123), (132), (12), (13), (23).

Figure 2. S3 group.

3. Draw a line segment with endpoints at 0 and 1, representing the 2 elements of the set Z2.

Figure 3. Z2 group.

It is noteworthy that the representation of Z2 is a didactic and intuitive approach, widely used, al-
though not always explicitly stated in formal textual sources.

The elements of S3 are as follows: e: identity permutation; (12): transposition; (13): transposi-
tion; (23): transposition; (123): cyclic permutation; (132): cyclic permutation. Table 1 provides a
detailed summary of the parity and mapping of each element:

Element of S3 Parity ϕ(σ) ∈ Z2

e even 0
(12) odd 1
(13) odd 1
(23) odd 1
(123) even 0
(132) even 0

Table 1. Mapping summary.
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4. Assign different colors to the vertices according to their image in Z2.

Figure 4. Definition of colors.

5. Add directional arrows connecting each element of S3 to its mapping (0 or 1).

Figure 5. Addition of arrows.

In Figure 6, we present a visual representation of the homomorphism ϕ : S3 → Z2 in GeoGebra,
organized in side-by-side 2D and 3D windows. In the mapping ϕ : S3 → Z2, colors were used to
distinguish the elements according to their image in the cyclic group Z2. Elements mapped to 0 (even
parity) are in red, while elements mapped to 1 (odd parity) are in green.
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Figure 6. Visual representation of the homomorphism ϕ : S3 → Z2 in 2D and 3D.

In the 2D window on the left, the elements are organized around a hexagon, while the arrows con-
nect the elements to the corresponding images in the codomain represented by the points 0 and 1 at
the bottom. In the 3D model (on the right), the 2D plane is elevated to create a three-dimensional
relationship, where the group Z2 is represented by two connected vertices, illustrating the structural
simplicity of the codomain. The colors used in the diagram are categorized in Table 2:

Color Element in S3 Image in Z2 Description

Red e, (123), (132) 0 Even Permutation
Green (12), (13), (23) 1 Odd Permutation

Table 2. Color categorization in ϕ : S3 → Z2

The complete construction in GeoGebra enabled a detailed and structured visualization of the homo-
morphism ϕ : S3 → Z2, reinforcing essential algebraic concepts such as the kernel, the image, and
the coset structure. The use of color coding and spatial organization made it possible to represent
these abstract notions in a tangible and pedagogically meaningful way.

4 FINAL CONSIDERATIONS

We presented a visual and interactive approach to explore group homomorphisms using GeoGebra
constructions, focusing on the specific case: the homomorphism ϕ : S3 → Z2. The goal was to illus-
trate fundamental concepts of Group Theory, such as the kernel, cosets, image, and the preservation
of operations.

The construction demonstrated how visual tools can simplify the understanding of structures in Ab-
stract Algebra. Through diagrammatic organization, the elements of the group S3 were visually struc-
tured to highlight the properties of the homomorphism and the relationships between the involved
groups. Additionally, the diagrams emphasized the practical application of the First Isomorphism
Theorem in a visual manner.
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From a pedagogical perspective, the proposed constructions serve not only to illustrate homomor-
phism concepts but also to support teaching strategies. By promoting visualization and interaction,
the models help students grasp abstract algebraic ideas such as operation preservation, kernel, image,
and quotient structure. These visual resources can be integrated into lessons to stimulate exploration,
discussion, and conceptual consolidation in undergraduate algebra courses.

Although not yet implemented in a real classroom setting, this construction can be readily adapted
for teacher education workshops or undergraduate algebra courses. The present study focuses on a
classical homomorphism case; future works could explore more complex or non-abelian structures,
including challenges in constructing visual representations for such mappings.
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30:e24030.

Sousa, R. T., Mangueira, M. C. d. S., and Alves, F. R. V. (2024c). A relação entre os grupos dos
quaternions e o grupo de lie su(2): uma perspectiva a partir da visualização via software geogebra.
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sity of Ceará and leads research in mathematics education and digital didactic
resources.
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