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DERIVATIVES AND APPROXIMATIONS: THE CASE OF THE
FUNCTION f(x) = ¢* AND THE AFFINE APPROXIMATION
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Abstract

This text explores, from a numerical perspective, the use of the affine function (z) = x+1
to approximate the function f(x) = e*, including values of x not so close to p = 0. The
exposition is visually and graphically implemented in GeoGebra, allowing for an interac-
tive understanding of the approximation.
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1 First-order Derivative & Affine Approximation in the Neighborhood of a Point

In Calculus I courses, we learn that derivatives allow for the construction of simpler functions
from potentially more complex differentiable functions. Let’s look at a classic example: consider
the exponential function

flz) = e,
with e = 2.718281828459045 . .. the Euler constant (an irrational number, the base of natural
logarithms)®.

Evaluating f(x) = e® for different numerical values of x can be challenging. This involves issues
of precision, speed, and the operations that a computer’s hardware can perform (essentially
strict versions of the four arithmetic operations). In Calculus, we show that the linearization

((x) = f(p) + f'(p)(x —p)

is the best affine approximation of the function f near the point p. Certainly, the function ¢
is much easier to evaluate for different values of x. Here, best is in the sense of minimizing an
expression for the approximation error, which can be established by Taylor’s Theorem. Let’s
delve into the details: for a differentiable function f in an open interval I, with p € I, by
Taylor’s Theorem, for any x € I we have

fx) = f(p) + f(p)(x — p) +R(x),

£(x)

!The universality of the exponential function in both pure and applied mathematics led the renowned math-
ematician Walter Rudin to call it the “most important function in Mathematics.”
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where f(p) and f'(p) are the values of f and its derivative f’ at p, and the remainder R(x) =
f(z) —¥¢(x) measures the approximation error. Furthermore, there exists a function h such that

R(z) = f(z) — l(x) = h(x)(z — p), with lim h(x) = 0.
T—p
Now, consider any other affine function g(x) = m (x — p) + f(p) whose graph (a line!) passes

through the point (p, f(p)) of the graph of f, here m is a real number that determines the slope
of the line.

The approximation error of the function f(x) by this other affine function ¢ at a point x is
given by:

E(x) = |f(z) = [m(z —p) + f()] |- (1)

Using Taylor’s Theorem, we can write:

f(@) = f(p) + ['(p)(x = p) +R(x)

S

-~

(z)

Substituting in (1), we get:

E(z) =

J) + [/ 0)(@ = ) +R(@) — [m(z = p) + [p)]|

-~

Lz

~

simplifying the expression, we obtain:

B(@) = | (/'(p) = m)(& = p) + R(z) |

We then see that the approximation error will be minimized when the slope of the line m
equals the slope of the tangent, that is, when m = f’(p). In this case, the approximation error
is reduced to the remainder term R(z), which tends to zero as x approaches p.

Conclusion: Taylor’s Theorem demonstrates that the tangent line to the graph of the function
f at the point (p, f(p)) is the best affine approximation of the function at that point, in the
sense of minimizing the approximation error.

In our example, f(x) = e*. Let’s choose p = 0, a point where it is easy to calculate f(z) = e®
and its derivative: f/(z) = f(x) = €*. Thus, we have: p = 0, f(p) = f'(p) = €® = 1 and
l(x) = f(0)+ f(0)(z —0) = 1+ x. Note, if  is close to p, then ¢(x) is close to f(z).

Let’s look at a numerical example:
% = £(0.01) ~¢(0.01) = 1 +0.01 = 1.01.

A common scientific calculator gives: %% = 1.01005016... The linear approximation yields
three correct decimal places, with the added bonus that computing the function y = ¢(x)
requires only a single arithmetic operation.
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2 Approximations for other values of x

When z is not near 0, for example, z = 1...In the specific case of the function f(z) = e*, we
can use the following smart trick:

Proceeding with this idea we arrive at, for example,

2\ 2

(((Cem=mrryy

Now 0.00048828125 is a number closer to 0 and we can use the affine approximation ¢(z) = x+1:
e 00018828125 1+ 0.00048828125 = 1.00048828125

Substituting this approximation in the previous expression, we obtain that

2

¢! ~ (((((1.00048828125)2)2>2)2) 2

= 1.00048828125%%8

which gives us
et~ 2.7176184823368797609

a scientific calculator provides
el ~ 2.7176184823368796

Note that we are using a recursive procedure: u(z) := if (x < 0.001, return 1 + x, otherwise
return (u(x/2))?).

3 TheGeoGebra Applet

The technique described in the previous section was implemented in the GeoGebra Applet
available at https://www.geogebra.org/m/twdraccq (Figure 1). In this applet, the slider n
determines the recursion depth of the function r. The slider ¢ determines the interval (—d,0) in
which the affine approximation ¢(z) = 1 + x is used. Besides the Recursive Affine Approxima-
tion, the applet displays the graph of f(x) = e” as natively drawn by GeoGebra. The Taylor
polynomial of order k is also displayed for comparison purposes. Finally, it is also possible to
numerically compare the values of all these functions for different values of x. The value of x
can be changed by moving the point named P.
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Source: https://www.geogebra.org/m/twdraccq
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Figure 1. GeoGebra Applet with Recursive Affine Approximation of the Function f(x) = e®.
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4 Final Considerations

The IEEE (Institute of Electrical and Electronics Engineers) does not directly specify a single
way to implement the calculation of elementary functions such as the exponential function
f(x) = e* in hardware, leaving this task to each CPU manufacturer. Several algorithms have
been proposed:

1.

Polynomial or rational approximations: Many algorithms use polynomial or rational ap-
proximations of elementary functions. This is especially useful for functions that cannot
be calculated directly in an exact manner, such as sine, cosine, and logarithms.

Pre-calculated tables: Some CPUs use tables of pre-calculated values combined with cor-
rection methods to refine the function value. This is done to speed up the calculation of
complex elementary functions, reducing the number of necessary arithmetic operations.

CORDIC algorithms (Coordinate Rotation Digital Computer): Widely used for calcu-
lating trigonometric and hyperbolic functions efficiently, CORDIC is also employed for
calculating exponents and logarithms. It relies on simple iterations of addition and shift-
ing.

Newton-Raphson iterations: This iterative method is used for calculations such as division
and square root, providing high precision in few iterations.

Factorization and decomposition methods: For functions like e”, breaking down into
smaller factors? makes it easier to approximate in larger values of x, which improves
the accuracy of the calculation with fewer operations.

For a general overview of these techniques, we refer to the source Muller (2006). The monograph
Detrey et al. (2007) notes that:

The study of specific hardware circuits for evaluating elementary functions in floating-
point was once an active research area, until it was realized that these functions were

not frequent enough to justify dedicating silicon to them. Research then shifted to-

wards functions implemented in software. However, this situation may be about

to change again with the advent of reconfigurable coprocessors based on FPGAs

(field-programmable gate arrays). These coprocessors now have capabilities that

allow accommodating double-precision floating-point calculations. Hardware oper-

ators for elementary functions, targeted at these platforms, have the potential to

significantly outperform software functions and will not permanently waste silicon

resources.
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2The technique we used in our example.
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