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Abstract

When discussing and analyzing functional dependencies, schoolbooks, and teachers often use dif-
ferent filling curves—asking students to match various vessels with their corresponding graphs.
After presenting the three basic ideas of functional thinking, the authors demonstrate ways of
determining functional equations from analyses of filling data and discuss the use of dynamic ap-
plets with students.
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1 INTRODUCTION

When designing teaching materials and courses, it is essential to consider the mental representation
of the mathematical concepts they will help form. The German concept “Grundvorstellungen” (ba-
sic ideas) covers three aspects of this issue. The first feature is the constitution of the meaning of a
mathematical concept by linking it back to familiar knowledge. The second one is generating a cor-
responding mental representation of that concept; it enables operative action at the level of thought.
Finally, the third quality of this didactical concept is the ability to apply a concept to real-life situ-
ations by recognizing a corresponding structure in subject-related contexts (Vom Hofe & Blum, 2016).

Especially concerning functional thinking, we know three basic ideas which cover the entire spectrum
of this topic (Frey, Sproesser, & Veldhuis, 2022):

1. A function matches each element in a set precisely with one element of a target set. This is the
basic idea of the assignment.

2. Functions are used to demonstrate how changes in one variable affect the second variable or
how the second variable is influenced by the first. This basic idea is called covariation.

3. The third aspect focuses on a function as a mathematical object with its specific representations
and properties. This is the object’s basic idea of a function.

The following sections cover the first and second basic ideas outlined above.
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2 FILLING VESSELS – DEFINITION AND EXAMPLES

Filling curves are functions that indicate the liquid level in different vessels as a function of time,
usually assuming that the vessels are filled at a constant inflow rate. To plot filling curves, a function
V : R+

0 → R+
0 , h → V (h) must first be defined, which gives the volume of the liquid in the vessel

as a function of the liquid level h. This can be done by using geometric aids, in the case of more
complex vessels, by integrating the function of the cross-sectional area (as a function of height), or—
when filling bodies of revolution—by calculating the respective volume of revolution. The inverse
function of this function V then gives the liquid level as a function of the liquid’s volume. To specify
the change in liquid level as a function of time, the liquid volume V must be replaced by a function
V : R+

0 → R+
0 , t → V (t) with V (t) corresponding to the volume of liquid in the vessel after t time

units. Since the filling rate is usually assumed to be constant, the function V is a linear function of
the form V (t) = ct where the scalar c ∈ R+

0 . In the subsequent sections, filling curves of different
bodies will be explored.

2.1 Filling a cylinder

First, we will look at calculating the function of the liquid level when filling up a cylinder with radius
r and height H . If the vessel is filled up until the height h, the volume of the liquid in the container
is given by V (h) = r2πh. Its inverse function h, given by h(V ) = V

r2π
, expresses the liquid level

as a function of the volume in the vessel. Assuming a constant flow rate c, the liquid level h can be
expressed as a function of time:

h(t) =
ct

r2π
.

The connection between time and liquid level is thus linear, which also holds for all other prismatic
bodies. When defining filling curves for specific containers, it is essential to adjust the units if nec-
essary. If, for example, the velocity of the filling process is given in liters per second, the vessel’s
dimensions must be given in (or changed to) decimeters. Additionally, the definition and the value set
must be specified since the vessel would overflow after a certain amount of time (i.e., t0 = r2πH

c
). To

look at a more concrete example, a cylinder with a radius r = 1 dm and a height of H = 3 dm must
be filled at a rate of 0.2 liters per second. The process would end after about 15π ≈ 47.12 seconds.
The liquid level (see Figure 1) as a function of time for this particular process can be expressed by
h : [0, 15π] → [0, 3] for t → 0.2t

π
as plotted in Figure 1.

Figure 1. Filling a cylinder.
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2.2 Filling compound bodies

It is also possible to define the filling curves of vessels composed of two bodies—for example, a vase
consisting of two cylinders with different radii. We must define a piecewise function, the first section
describing the filling process of the first part of the vessel and the next section expressing the adding
body’s filling process. Given a body composed of two cylinders with the radii r1 = 4 dm and r2 = 2
dm, both of height H = 3 dm, the volume V as a function of height would be defined as:

V (h) =

{
16πh if 0 ≤ h ≤ 3

48π + 4π(h− 3) if 3 < h ≤ 6
.

Thus, the inverse function h, expressing the liquid level as a function of the volume, is defined by

h(V ) =

{
V
16π

if 0 ≤ V ≤ 48π
V−48π

4π
+ 3 if 48π < V ≤ 60π

.

Assuming an inflow rate of 12 liters per minute (0.2 liters per second), the liquid level as a function
of time (in minutes) is given by

h(t) =

{
12t
16π

if 0 ≤ t ≤ 4π
12t−48π

4π
+ 3 if 4π < t ≤ 5π

and plotted in Figure 2.

Figure 2. Filling a compound body.

Lambert and Hilgers (n.d.) also note that students often understand the relationship between the struc-
ture of the vessel and the filling curve even better when they have the opportunity to look at compound
bodies. Intuitively, we recognize that the filling curve’s slope changes precisely where the water level
reaches the upper cylinder. At this point, the filling curve shows a buckle. Therefore, the function is
continuous at this point but not differentiable.

Furthermore, one can see that the water level rises faster for vessels with a smaller radius. Finally,
students will examine the vessels and the filling curve more closely to understand the exact relation-
ship between the curve’s slope and the cylinders’ radii: The lower cylinder has a radius twice as large
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as the upper cylinder. Since both cylinders have the same height and the volume of the lower cylin-
der is four times as large as the volume of the upper cylinder (V (2r) = 4r2πh = 4V (r)), the time
required to fill the lower cylinder is four times longer than the time necessary to fill the upper half of
the vessel. Therefore, the water level must rise four times as fast when the upper part of the vessel has
been reached. This relationship is reflected in the functional equation and the graphical representation
of the filling function.

2.3 Filling a paraboloid

Noting that a cylinder can also be considered as a rotational body, we explore filling curves of rota-
tional bodies using the parabola given by the equation p : y = ax2, where a ∈ R+, rotating around
the y-axis. First, the equation must be solved for x2, resulting in x2 = y/a. The volume V of liquid
in the vessel as a function of the liquid level h is then given by

V (h) = π

∫ h

0

x2 dy = π

∫ h

0

y

a
dy =

πh2

2a
.

The inverse function of V expresses the liquid level h as a function of the liquid’s volume and is given
by

h(V ) =

√
2V a

π
.

Assuming a constant inflow rate c (in liters per second), we can again replace the term V by ct where
c ∈ R and t in seconds, resulting in a function that expresses the liquid level in the vessel as a function
of time—a root function with the functional equation

h(t) =

√
2cta

π
.

If the vessel’s height H , as well as the radius R of its opening, is given, the parameter a that defines
the paraboloid of revolution can be expressed by solving the equation H = aR2 for a = H/R2. If, for
example, a paraboloid-shaped vessel with a height of 1.5 decimeters (dm) and a (maximum) diameter
of 1 dm is filled at a constant inflow rate of 0.2 liters per second, the parabola rotating around the
y-axis would be defined by p : y = 6x2, thus, the liquid level as a function of the time is expressed by

h(t) =

√
2.4t

π
.

To find the definition set, the vessel’s maximum capacity must be calculated: V (1.5) = π 1.52

12
=

0.1875π ≈ 0.59 liters. The vessel is filled at an inflow rate of 0.2 liters per second. Therefore,
after about 0.9375π ≈ 2.95 seconds, the vessel is filled up, and the function h is well defined for
t ∈ [0, 0.9375π]. The parabola and corresponding filling curve are presented in Figure 3.
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Figure 3. Filling a paraboloid.

The slope of the graph of h is infinite at the point of origin. This is because of the point-shaped bottom
of this vessel form. The liquid level increases instantly when starting the filling process.

2.4 Filling non-rotational bodies

This subsection will deal with filling up vessels, not bodies of revolution. To do so, a container with
rectangular cross-sectional areas will be examined. The container’s side length increases linearly with
increasing height. The width b of the cross-sectional areas remains constant. The side length of the
base area is denoted by a1, that of the top area by a2. The height of the vessel is expressed by the
variable H . A sketch of such a container is shown in Figure 4.

Figure 4. Filling non-rotational bodies.

First, a function must be set up, which gives the side length a(h) of the cross-sectional area at level
h. This linear function is defined by a : [0, H] → R, with

a(h) =
a2 − a1

H
· h+ a1.
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Thus, the cross-sectional area Q as a function of the level h can be expressed by

Q : [0, H] → R, Q(h) =

(
a2 − a1

H
· h+ a1

)
b.

To find the volume of the liquid in the vessel, filled up to the liquid level h, the definite integral of Q
with the limits 0 and h must be determined, expressing the volume as a function of the liquid level:

V : [0, H] → R, V (h) =

∫ h

0

(
a2 − a1

H
· x+ a1

)
b dx = b

(
a2 − a1
2H

· h2 + a1h

)
.

V (0) = 0 expresses the minimum, V (H) = b
(
a2−a1

2
·H + a1H

)
= bH · (a1 + a2)/2 the maximum

volume of the vessel. By setting up the inverse function and replacing V with ct (again, assuming a
constant flow rate c ∈ R+), the liquid level as a function of time is defined by the root function

h : [0, t0] → R, h(t) =
−a1 +

√
a21 + 2 · a2−a1

H
· ct

b

a2−a1
H

.

If the container is assumed to be a large flower planter with the measurements a1 = 2 dm, a2 = 4 dm,
b = 8 dm, and H = 3 dm, the maximum capacity is 72 liters. At a flow rate of 0.2 liters per second,
the flower box is filled up after t0 = 6 minutes (or 360 seconds). Thus, the function h is well defined
for t ∈ [0, 360] and the water level as a function of time is given by h : [0; 360] → R with

h(t) = −3 +
3

2

√
4 +

1

30
t,

as also demonstrated in Figure 4.

2.5 Filling the frustum of a cone

The volume of a vase, shaped like a frustum of a cone, can be calculated by rotating a linear slope
around the x-axis (but also with geometric considerations, if necessary). If r1 denotes the radius of
the base area (the smaller base of the cone), r2 the radius of the top area, and H the height of the vase,
the volume V as a function of the liquid level h is given by

V (h) = π

∫ h

0

(
r2 − r1

H
· x+ r1

)2

dx

=
Hπ

3(r2 − r1)

[(
r2 − r1

H
· h+ r1

)3

− r31

]
with the inverse function

h : h(V ) =
H

r2 − r1

(
3

√
3(r2 − r1)V

Hπ
+ r31 − r1

)
.

Note, for h = H we get

V (H) =
Hπ

3(r2 − r1)

[(
r2 − r1

H
·H + r1

)3

− r31

]
=

Hπ

3(r2 − r1)
(r32 − r31)

=
Hπ

3

(
r21 + r1r2 + r22

)
.
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This is the well-known term for the volume of a frustum of a cone. In the case of r1 = 0, the vessel is
a cone with the function h(V ) = H

r2
3

√
3r2V
Hπ

, showing an infinite slope at the point of origin.

Again, V can be replaced by ct(c ∈ R+) to express the liquid level as a function of time. If the vessel
is a large floor vase with the measurements r1 = 1 dm, r2 = 5 dm, and H = 6 dm, the vase holds
about 194.78 liters in total, resulting in a filling time of about 3.25 minutes, if a constant inflow rate
of 1 liter/second is assumed. Replacing V with 60t (t in minutes), the equation

h(t) =
6

4

(
3

√
720t

6π
+ 13 − 1

)

=
3

2

(
3

√
120t+ π

π
− 1

)

gives the liquid level in the vase (in decimeters) as a function of time (in minutes). In this case,
the inequality 0 < h′(0) < ∞ holds. This filling curve, plotted in Figure 5, is used for the applet
described in the next section.

Figure 5. Filling the frustum of a cone.

It is also possible to derive the formula for V without using integral calculus. Therefore, a discussion
can be provided at secondary level 1 (e.g., 9th grade). Figure 6 demonstrates the fundamental idea.
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Figure 6. The volume of a frustum of a cone.

The frustum of a cone can be considered the remaining part of a small cone is cut off from a big-
ger one. Consequently, we calculate r22π(H1+H)

3
− r21πH1

3
. Further, the proposition H+H1

r2
= H1

r1
=: λ

can be derived. The volumes of the big and small cone are thus V1 =
r22π(H+H1)

3
= r32 · π

3
· λ and

V2 =
r21πH1

3
= r31 · π

3
· λ. The difference can then be expressed by V1 − V2 = π

3
λ (r32 − r31) =

π
3
λ(r2 − r1) (r

2
2 + r2r1 + r21). Because of λ(r2 − r1) = λr2 − λr1 = (H +H1) − H1 = H , the

frustum of a cone has the volume V = πH
3
(r22 + r2r1 + r21).

The next step is to describe the linear increase of the radius r of the frustum from the bottom to
the top. Therefore, r depends on the height h of the frustum: r(h) = r2−r1

H
· h + r1. Replac-

ing H by h and r2 by r(h), the volume of the frustum from the bottom to height h is V (h) =
πh
3

(
r21 + r1

(
r2−r1
H

· h+ r1
)
+
(
r2−r1
H

· h+ r1
)2), for 0 ≤ h ≤ H .

We can use GeoGebra CAS to find the inverse function h(V ). Suppose we compare the two terms
V (h) = Hπ

3(r2−r1)

[(
r2−r1
H

· h+ r1
)3 − r31

]
, given by the formula of the volume of rotational bodies,

and V (h) = πh
3

(
r21 + r1

(
r2−r1
H

· h+ r1
)
+
(
r2−r1
H

· h+ r1
)2), given by elementary geometry, we

will not see their identity at first glance. The second one is much more difficult to invert than the

first one. The computer yields h(V ) =
3
√

−H3r31π
3+3H2V r1π2−3H2V r2π2+Hr1π

r1π−r2π
. The denominator is

negative. For that, the numerator must also be negative. Further manual transformations lead to

h(V ) = H
r1−r2

(
3

√
3V (r1−r2)

πH
− r31 + r1

)
= H

r2−r1

(
3

√
3V (r2−r1)

πH
+ r31 − r1

)
. This result is identical to

the inverse function of the rotational volume.

2.6 Resume

Subsections 2.1 to 2.5 show that filling curves can be discussed at different levels. Filling a cylinder
leads to simple linear functions (Subsection 2.1). However, if one wants to fill a non-rotational body
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with increasing cross-sectional areas (Subsection 2.4), the change in the length of specific edges with
increasing height has to be described first. Suppose the areas of the cross sections depend on one
variable. In that case, students can quickly evaluate the definite integral to find the volume of this
solid with specific cross sections on an interval. This application is an attractive alternative to the
well-known rotational bodies like a paraboloid in Subsection 2.3.

Simple compound bodies, composed of cylinders and cones (cf. Subsection 2.2), allow analyzing
filling curves qualitatively. Similar to Figure 2, we can construct the filling curve of the vessel shown
in Figure 7 by noting that the cross-sectional area of the top cylinder is the ninth part of the cross-
sectional area of the bottom cylinder. This comes from the proportion of the basic diameters (3:1).
The height of the top cylinder is three times bigger than the height of the bottom one.

Figure 7. Two cylinders with different cross-sections.

Therefore, filling the upper part of the vessel will be three times faster than filling the cylinder that
makes up the bottom of the vessel (Lambert & Hilgers, n.d.).

Similar observations can be made when analyzing a compound body, as shown in Figure 8, with a
cone three times higher than the cylinder. Because of the same bottom area, the volumes of the two
bodies are equal and, consequently, the filling times.

Figure 8. A cone at the top of a cylinder.

The volume of the top half of the cone is an eighth of the rest. Therefore, filling the lower half of
the cone takes 7

8
of the time needed to fill the entire cone. The filling curve’s graph has an infinite

slope at the cone’s peak. The continuous decrease of the diameter of the entire body leads to a graph
without buckles, dissimilar to Figure 2 (Lambert & Hilgers, n.d.). With the results of Subsection 2.1
and Subsection 2.5, it is easy to compose the filling function of the body shown in Figure 8.
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3 THE APPLET

Next, we demonstrate how GeoGebra applets can be used to help students grasp the concept of
filling curves. While schoolbooks typically present graphs to be matched with the corresponding
vessel, the entire dynamic process can be made visible using GeoGebra. An applet (https://
www.geogebra.org/m/ykh56bys) demonstrating the process of filling a vase and its relation-
ship to the filling curve has been developed in the course of a master’s thesis on GeoGebra applets
(Sergi, 2022, pp. 76–83). Figure 9 shows the applet as it appears in its initial state.

Figure 9. Applet in the initial state.

The vessel in this applet is a large floor vase, a frustum of a cone with the measurements r1 = 1 dm,
r2 = 5 dm, and H = 6 dm as described in Subsection 2.5. When a user presses “Start,” a virtual
push button programmed with StartAnimation(), an invisible slider is set in motion, changing
the value of a variable t. The value of this variable corresponds to the time passed in minutes. The
vase is filled at a constant rate of one liter per second (60 liters per minute). The slider runs through
the interval [0, 3.25], the time (in minutes) needed to fill the vase (Subsection 2.5).

All dynamic elements that can be found in this applet are dependent on the value of t: The two 3-
dimensional truncated cones on the right were created by rotating straight lines around the z-axis, with
the rotation interval of the blue line corresponding to the calculated height of the water level at time
t to ensure a correct increase in the liquid level (rotation interval [0, h(t)]). The bullets, representing
water dropping from the water tap, are dotted with z-components changing their value as the slider
moves along. In total, eight dots were defined, ranging from (0, 0, 12− 6

3.25
t) to (0, 0, 5− 6

3.25
t). Thus,

the dots move down the vertical axis as the value of t increases and reach their lowest point at t = 3.25.
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Additionally, conditions for the visibility of these dots have been set to ensure that they are only
visible as they are below the tap and within the vase (0.5 < z(P ) < 7.1) and as soon as the slider is
set in motion (t > 0). Figure 10 shows the conditions for the visibility of one of those dots.

Figure 10. Conditions for visibility.

Another dot in the graphics window on the left, defined by the coordinates (0, t), specifies the end-
point of the horizontal as well as the vertical line, illustrating how the time passed, and the water level
can be read off the graph h, as demonstrated in Figure 11.

Figure 11. The filling process.
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As suggested by Dorner (2014, p. 35f.), applets that are not interactive—so-called demonstration
applets—should always include guiding questions to help students focus on the essential mathemati-
cal aspects. Thus, the question “When does the water level increase more rapidly? At the beginning
or rather towards the end? Why?” have been included as a text element.

By ticking the checkbox “Show solution”, an explanation—a text element with visibility conditions
depending on the value of the checkbox—appears, as shown in Figure 12.

Figure 12. Showing the solution.

The applet primarily supports students’ functional thinking and helps them grasp the concept of co-
variation. Not only does it demonstrate that a change in the argument causes a change in the function
value, but the nature of this change is thematized and illustrated (especially with the help of the ad-
ditional tasks). In contrast to static illustrations, as they are often found in textbooks, the dynamic
elements focus on how changing one quantity affects the other. If students cannot perform and ob-
serve dynamic changes, this relationship between elements of the domain and codomain becomes less
noticeable. Since the instructions are exact and the usability of this applet is straightforward, students
can use the applet without the teacher’s guidance. If the teacher does the demonstration, the additional
questions could be deleted and replaced by a dialog guided by the teacher.
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