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Abstract

We present the case of an origami paper cup and its extensions to data collection, analysis,
and dimensional reasoning in K–12 teacher education, featuring the integration of GeoGebra.
The paper cup case has been implemented numerous times in our K–12 mathematics methods
classes, targeting a variety of issues of mathematics teaching and learning—multiple representa-
tions, mathematical discourse, intuitive perceptions, rational reasoning, data analysis, as well as
hands-on engagement and ownership. To implement the instructional tasks, we need an adequate
supply of commercial or self-made origami paper, copy paper of various sizes, and a few pounds
of pinto beans or similar beans that are safe for classroom use as well as access to GeoGebra.
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1 INTRODUCTION

Mathematics is a coherent system of ideas and processes with ubiquitous connections to the real
world and other branches of mathematics. Not only is our understanding of mathematics grounded
in making connections, but the teaching of mathematics also involves the design and use of rich con-
texts and activities to support classroom sense-making and communication that explores the interplay
among diverse aspects of mathematical connection and integration (National Council of Teachers
of Mathematics[NCTM], 2000). Accordingly, teacher candidates must experience mathematics as a
“connected and integrated whole” (NCTM, 2000, p. 65) through meaningful activities that embody
the holistic nature of mathematics. This article showcases an origami-inspired learning sequence in
our mathematics methods course that provides teacher candidates with rich opportunities to see the
evolving mathematical landscape around a simple origami paper cup. The sequence has an easy entry
point—unfolding along physical, visual, algebraic, and statistical dimensions in a manner that appeals
to the interests of teacher candidates.

Origami paper folding is traditionally a form of art widely known for its appealing realism, cultural
relevance, and values in recreational mathematics (Gardner, 2008; Lang, 2021). In recent years,
origami has found its way into industrial design and applications (e.g., National Aeronautics and
Space Administration, n.d.) and has also been reported in numerous articles in K–12 mathematics
education, serving a host of pedagogical purposes such as student engagement, language develop-
ment, geometric communication, habits of mind, and algebraic thinking (Cipoletti & Wilson, 2004;
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Georgeson, 2011; Higginson & Higginson, 2001; Robichaux & Rodrigue, 2003; Wiles, 2013). In par-
ticular, Georgeson (2011) reported a case where origami and beans were used for students to explore
the volume of a modular origami cube, its dimensional connections, and related algebraic analysis.
The present case starts with a simple paper cup with a distinctive 3D shape and evolves into data
analysis as well as geometric and algebraic explorations. As this case has been implemented with our
teacher candidates with highly replicable results, we describe the case generically, supporting our de-
scriptions with actual data and images across several implementations of the case, while highlighting
turning points for pedagogical and mathematical explorations as well as details of our integration of
GeoGebra.

2 MAKING A PAPER CUP

Figure 1. A square is folded into a small cup in a few steps.

We use origami projects routinely with our teacher candidates to meet a variety of pedagogical and
content goals. Teacher candidates and children usually enjoy the art and emerging mathematics be-
hind origami folding. We first came across the origami paper cup in Soong (1948, pp. 6-7). It takes a
few minutes in a classroom setting, requiring little prior origami experience yet affording rich discus-
sions.
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Figure 2. Dynamic GeoGebra simulation of the processes of an origami paper cup.

As illustrated in Figures 1 and 2, we start from an origami square, typically six inches by six inches.
First, we fold the square ABCD along its diagonal AC for a triangle △ABC. Second, we fold point
A to point E, making sure EG (or AG) is parallel to CF , which is part of AC. After this step, we
have quadrilateral BCFG. Third, we repeat step two on point C, folding C backward to G on the
reverse side, after which we arrive at a pentagon BEHFG. Fourth, we fold the front triangle △BEG
forwards along EG and tuck it into the pocket EFG at the front. Fifth, we repeat the previous step,
fold the overlapping triangle △BEG backward, and tuck it into the back pocket EHG. After this
step, we get an isosceles trapezoid EHFG. Finally, we open the trapezoid EHFG at the top for a
paper cup. All teacher candidates can get their paper cups made in about fifteen minutes in a group
setting. Some may need assistance with the second step when folding parallel lines.

While language is an important part of communication, the paper cup feels easier when approached as
a hands-on task. In folding the paper cup, teacher candidates have opportunities to reflect on their use
of words, pictures, and especially physical actions as they struggle through the simple processes and
discuss the emerging shapes using meaningful mathematical terms. For instance, parallel lines and
angle bisectors (segment AE would be a bisector of angle ∠BAC in Figure 2) can be used to address
the consequences of paper folding. Is AGEF (or CHGE) a rhombus? We ask our teacher candidates
to unfold the paper cup to look for patterns and to generate questions for further exploration.
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3 ESTIMATING VOLUME OF THE PAPER CUP

Once everyone in the class has made a paper cup from a six-inch square, we ask teacher candidates
to estimate the volume of the paper cup, which certainly has yet to have a ready-made formula. The
paper cup can indeed hold water. Thus, it is appropriate to fill it up with water (or coffee for easy
reading) and then pour the water into a measuring cup for an estimate in ml or fl oz. While a little
messy, it should be demonstrated to students upon request. In our work with teacher candidates and
young children, we have used pinto beans (or similar beans) to approach the volume of the paper cup,
as did Georgeson (2011).

First, students are given a handful of pinto beans to get a feel for them. Then, they are asked to take a
close look at their paper cup and estimate the number of pinto beans that can go into the cup, taking
note of and reporting the number to the instructor. The instructor collects the class data in a table,
using a GeoGebra spreadsheet, and leads a brief discussion of the perceptions of the whole class. We
typically create a boxplot in GeoGebra (as shown in Figure 6) to illustrate the distribution of the class
data. The mean can be used as a hypothesis to be tested through subsequent data collection.

Figure 3. A cupful of pinto beans to be counted.

Once the intuitive data are recorded and briefly analyzed via a Geogebra boxplot, teacher candidates
will each take a cupful of pinto beans and count the actual number of beans their cup can hold (Figure
3). Counting strategies are discussed before or after students’ actions according to the instructor’s
pedagogical intentions. While some students will count one by one, others will naturally resort to
grouping (Figure 4) or even some artistic display (Figure 5).

After all the students have finished counting, they report their numbers to the instructor, who records
the data in the same GeoGebra spreadsheet to compare the intuitive and the experimental data. Once
the class data are recorded, students should be encouraged to make observations and propose ways
of data analysis. Another boxplot can be made and placed alongside the previous one for comparison
and statistical inferences.
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If desired, a t-test can be conducted for students to decide their hypothesis. Figure 6 shows the
boxplots of both intuitive and actual data together with the results of a t-test during our implementa-
tion in Fall 2018. The mean of the class’s initial estimates is 63 beans, while the mean of the actual
data is 160, which may vary with the batch of beans.

As is common in our teaching experiments, teacher candidates and children tend to underestimate
the volume of the paper cup. Frequently, even the boldest estimate is less than the minimum of the
actual data. This is a meaningful moment for teacher candidates to discuss the interplay between
intuition and rational reasoning and the integration of data collection and analysis in teaching and
learning mathematics.

Figure 4. Counting with strategy the beans from a paper cup based on an eight-inch square.

Figure 5. An artistic arrangement of a cupful of beans by a teacher candidate (eight-inch square).
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Figure 6. Boxplot comparison and t-test between the perceived volume and actual volume in number
of beans (six-inch square).

4 WHAT-IF’S AND DIMENSIONAL EXPLORATIONS

The paper cup activities can be readily extended to launch a discussion about dimensions and their
implications, which we typically pursue in a three-hour class period. A series of what-if questions
(Brown & Walter, 2005)) can be posed and investigated using data collection and algebraic reasoning.
For example, what if we make a similar paper cup out of a 3-inch square? What if we make a similar
paper cup out of a 12-inch square? How about an 8-inch square? How about a 5-inch square? Usu-
ally, it is a pleasant surprise for students to face the consequence of doubling the starting square from
six inches to 12 inches — the new cup can hold eight times as many beans. This can be demonstrated
by filling the bigger cup with the small cup when there are enough pinto beans.

Ultimately, the 3D nature of volume will become part of the discussion, which leads naturally to
discussions about the paper cup’s exterior surface area — two overlapping trapezoids. What would
happen to the exterior surface area if the original square is doubled, or tripled, in terms of its di-
mensions? We have also had teacher candidates making tiny paper cups using a 3-inch square, which
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holds about 20 beans. As paper folding becomes easier with each replication, the mathematical ideas
become more curious! Indeed, an algebraic representation is possible. We usually bring in the cube
as a scaffold. In short, if a cup based on a six-inch square can hold 160 beans, a cup made from a
N -inch square can be expected to hold 160

(
N
6

)3 beans.

4.1 Classroom Examples

To show what may unfold in a real class, we share some details from an implementation of the paper
cup activity with one of our classes back in the fall of 2018.

After the initial data collection with cups constructed from six-inch squares, the mean bean count
stood at 160 beans, clearly violating our hypothesis. Next, teacher candidates discussed the cup made
from a 12-inch square. After observing the big cup, one student, Amy,1 conjectured that it would
hold four times as many beans. She supported her argument with a demonstration, showing that four
small cups fit onto a big cup—using flattened cups in the shape of a trapezoid. The instructor repeated
Amy’s idea to the class, confirming Amy’s claim as a valid 2D perspective and calling attention to the
3D nature of volume.

Next, Amy discovered she could dump more than four small cupfuls into the big cup using real beans.
Amy’s classmate, Kara, asked how many beans could go into a smaller cup made from a three-inch
square (i.e., half the side length of the original square). However, the instructor explained that the
resulting volume should be one-eighth the volume of the original, which Kara did not clarify. Then,
Madi went ahead, tore a six-inch square into four equal pieces, and made a smaller cup. She walked
across the room and handed it to Kara. Kara put some beans in it and counted 19. It all happened
naturally as the teacher candidates got curious about the problem and sought solutions as a group.

Indeed, there are multiple directions a teacher can proceed in response to the dynamics of student
learning, blending a host of pedagogical and mathematical discussions. The paper cup and beans are
merely tools of exploration and communication in mathematics.

5 UBIQUITY OF INTUITIVE UNDERESTIMATION

Human intuitions are natural and persistent (e.g., De Bock, Van Dooren, Janssen & Verschaffel, 2007),
affording rich opportunities for teacher candidates and teacher educators to address the roles of math-
ematical reasoning and data-based inferences. In the case of teacher candidates’ initial perceptions
of the paper cup volume, there has been no significant change over the past few years with different
groups of teacher candidates. Figure 7 shows the boxplots of intuitive data collected in three iterations
of the case, where the mean remains around 60 beans for a paper cup made from a six-inch square.
After the teaching experiment, teacher candidates tended to be cautious in making predictions about
bigger or smaller cups. However, they still tend to underestimate the volume. In addition to physical
modeling, a transition toward algebraic analysis is thus warranted and will allow them to make further
connections and grow as resourceful classroom teachers.

1all student names in this paper are pseudonyms
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Figure 7. Multisemester boxplot comparison of intuitive data about the paper cup volume based on a
six-inch square(n = 24, 28, 23, respectively).

6 MATHEMATICAL EXTENSIONS

From paper folding to GeoGebra data analysis and algebraic discussions, the origami paper cup pro-
vides a rich context for teacher candidates to experience the connections among mathematical con-
cepts and processes. Whenever time permits, the paper cup can be further mathematized to facilitate
the exploration of other mathematical ideas. We discuss two extensions in the following sections.

6.1 Angle Bisectors

In folding an origami square to two overlapping triangles and then to a pentagon (Figures 1, 2), we
directed students to bring point A to a certain point E on the other side of the triangle and make sure
EG is parallel to the base CF . In paper folding, we just estimate. But what is point E (or G) in a
rigorous geometric sense? And how can we construct it in GeoGebra?

The location of point E is an interesting and worthwhile task to explore before we can simulate
the paper cup using GeoGebra. A close examination of the processes in Figure 2 leads to a few
observations:

1. AF ∼= EF (as the consequence of folding).
2. AG ∼= EG (as the the consequence of folding).
3. EG ∥ AF (as is the requirement).
4. ∠GEA ∼= ∠GAE ( because △EGA is isosceles).
5. ∠GEA ∼= ∠EAF ( because EG ∥ AF ).
6. Thus, ∠GAE ∼= ∠EAF .

Therefore, point E is on the angle bisector of ∠BAC, which can be readily constructed in GeoGebra
using the angle bisector tool or other geometric processes. By symmetry, point G is on the bisector
of ∠ACB. It then follows that in Figure 2, AGEF is a rhombus; so is CHGE.
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These observations facilitate the construction a dynamic paper cup using GeoGebra: Starting from
a square, we construct a diagonal AC, an angle bisector AE, and some parallel lines (EG ∥ CA,
EF ∥ BA, and GH ∥ BC) for the paper cup FGEH in Figure 2.

6.2 Surface Area of the Paper Cup

The surface area of the finished paper cup is another worthwhile inquiry. As shown in Figure 8, the
paper cup is made up of two overlapping trapezoids, namely FGEH . Using GeoGebra, we can read
the area of FGEH from the algebra panel: approximately 6.17622 square units for a six-inch origami
square. If we shrink the original square to three units, its area becomes 1.54416 square units, which
is one-fourth of the previous one. Dynamic manipulations help highlight the two-dimensional nature
of the area of FGEH .

Figure 8. Finding the surface area of the paper cup.

Indeed, we can delve deeper and find a general formula for the area of the trapezoid FGEH . Let’s
assume the origami square has a side length of s units. Further, we use x to represent the length of
EB in Figure 8, and construct ET ⊥ CA. Since point E is on the bisector of ∠BAC, then |ET | =
|EB| = x. Also, △CET is an isosceles right triangle, which means |CE| =

√
2x. Therefore, we

have √
2x+ x = s,

and
x =

s√
2 + 1

.
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Further, since CH ∼= CE (because CEGH is a rhombus), we can calculate the area of △CEH:

Area△CEH =
1

2
×
√
2x2.

The trapezoid FGEH is geometrically △ABC minus two copies of △CEH and △EBG. It is worth
noting that two copies of △CEH make the area of rhombus AGEF or CEGH . Thus, we have

AreaFGEH =
1

2
s2 − 2× 1

2
×
√
2x2 − 1

2
x2,

which can be simplified to
AreaFGEH = (3− 2

√
2)s2.

The formula above can be used to calculate the area of the trapezoid (one side of the paper cup) based
on an arbitrary square with a side length of s. The surface area of the paper cup is accordingly twice
as much.

7 CONCLUSION

Through numerous iterations, we found that the origami paper cup provides rich and affordable math-
ematical experiences for both teacher candidates and young children. It allows all students to see
the unfolding nature of mathematical ideas, ranging from hands-on art, mathematical conversations,
basic geometry, algebraic reasoning, measurement, and data analysis, with moderate struggles and
memorable surprises. The survey data confirm our self-reflection on teacher candidates’ learning
experience. Our teacher candidates were very positive about the origami lesson sequence, and they
wrote, ”This activity was very engaging and fun!!! . . . I loved it! I’m going to use it in my class-
room!:) . . . It lets everybody have a part in the lesson. . . . I thought the origami was simple. Still,
I ended up being a great resource to teach lessons like estimation, probability, volume, area, mean,
median, mode, minimum, maximum, outlier, average, etc. . . . It seemed difficult. Still, it ended up
being very easy to make. The concept was interesting, and I enjoyed calculating the difference in the
number of pinto beans each size held. . . . It makes the lecture part of the lesson come to life. . .
. It showed students that you can always have many options. . . . It was fun to listen to my peers’
problem solve out loud with one another. . . . Data always helps to have a deeper understanding.”

As we seek to enrich the paper cup case in future iterations, we have come to see the surface area
of the flattened paper cup (two overlapping trapezoids) as an algebraic treasure hidden in the paper
cup. Furthermore, as our teacher candidates become fluent with modeling tools such as GeoGebra, it
is worthwhile to demonstrate or even have them try to simulate the geometric transformations behind
the process of making a paper cup (https://www.geogebra.org/m/peez9med), which will
help make meaningful connections between informal and formal mathematical explorations and fa-
cilitate the communication of mathematical ideas. GeoGebra, with its simple and efficient modeling
tools, promises to bridge various origami art projects to informal and formal mathematical inquiries.
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