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Abstract

LU decomposition is a fundamental in linear algebra. Numerous tools exists that provide this
important factorization. The authors present the conditions for a matrix to have none, one, or
infinitely many LU factorizations. In the case where no factorization exists, the authors illustrate
how to approximate an LU decomposition by considering LU factorization of nearby matrices.
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1 INTRODUCTION

Many websites (IO Tools, 2021; Codesansar, 2021) provide tools to determine an LU decomposi-
tion of a matrix; however, none of them can decompose all matrices. Using code, we developed a
GeoGebra applet that can decompose square matrices for those that can be factored and decompose
“nearby” matrices without an LU decomposition using perturbation. In this paper, we first present
conditions for a matrix to have a unique LU decomposition. Several examples are included to illus-
trate this theorem. Next, we state and prove special cases for matrices with infinitely many and no
LU factorizations.

In this paper we employ the following notation. We denote the set of n × n matrices over the real
numbers by Mn = Rn×n. If A = (aij) ∈ Mn, then the determinant of A is denoted by det(A). A
leading principal minor Ak of matrix A ∈ Mn is the determinant of a principal submatrix obtained
by deleting the last (n − k) rows and columns of A. A matrix A ∈ Mn is called lower triangular
if aij = 0 for i < j. A unit lower triangular matrix is a lower triangular matrix with aii = 1 for
1 ≤ i ≤ n. The transpose of A ∈ Mn is denoted by AT ∈ Mn. The matrix A ∈ Mn is upper
triangular if AT is lower triangular. For a complete background in linear algebra, see Strang (1993).

2 LU DECOMPOSITION

For A ∈ Mn, the factorization A = LU , where L is unit lower triangular and U is upper triangular,
is called the LU decomposition, or LU factorization. We can use such a factorization, when it exists,
to solve the system Ax = b by first solving for the vector y in Ly = b and then solving Ux = y.
However, not every n × n matrix A has an LU decomposition. The following theorem provides
conditions for the existence and uniqueness of an LU decomposition of a n × n matrix. A proof can
be found in Johnson and Horn (1985, p. 160).
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Theorem 1 (Existence). Suppose that A ∈ Mn is rank k. If det(Aj) 6= 0 for all j = 1, . . . k, (all
leading principal minors are non-zero), then A has a LU factorization. Moreover, if k = n, then this
factorization is unique.

The following examples illustrate Theorem 1.

Example 1. The 3 × 3 matrix A =

1 5 1
1 4 2
4 10 2

 has all non-zero principle minors, A1, A2 and A3.

Therefore, there is a unique LU factorization with both L and U nonsingular given by

1 5 1
1 4 2
4 10 2

 =

1 0 0
1 1 0
4 10 1

1 5 1
0 −1 1
0 0 −12

 .
Example 2. Consider the rank 2 matrix A =

1 2 3
4 5 6
7 8 9

. Since A1 and A2 are nonzero, Theorem 1

says an LU decomposition exists, for example1 2 3
4 5 6
7 8 9

 =

1 0 0
4 1 0
7 2 1

 1 2 3
0 −3 −6
0 0 0

 .
Example 3. The following rank 1 matrix has an LU decomposition since the first principle minor is
nonzero, however, it is not unique.1 1 1

1 1 1
1 1 1

 =

1 0 0
1 1 0
1 x 1

 1 1 1
0 0 0
0 0 0

 .
What happens if a matrix does not meet the hypothesis in Theorem 1? The next two theorems classify
those matrices.

Theorem 2 (Matrices with Infinitely Many LU Factorizations). For A ∈ Mn, if two or more of any
first (n − 1) columns are linearly dependent or any of the first (n − 1) columns are 0, then A has
infinitely many LU factorizations.

Proof. We will prove only for the the case when A ∈M3.

Case 1: Suppose column one is equal to 0. In particular, A =

0 d g
0 e h
0 f i

. We have, A1 = A2 = 0.

Suppose the factorization, A = LU , exists, then0 d g
0 e h
0 f i

 =

 1 0 0
m 1 0
n p 1

0 d g
0 r s
0 0 t

 .
From this we get the following equalities:
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A =

0 d g
0 e h
0 f i

 =

 1 0 0
m 1 0
n p 1

0 d g
0 r s
0 0 t

 =

 0 d g
0×m dm+ r gm+ s
0× n dn+ rp gn+ sp+ t

 .
Equate each cell from A and the product LU, we have (0)m = 0, thusm can be any number. Similarly,
(0)n = 0, thus n can be any number. From this we have,

dm+ r = e⇒ r = e− dm (1)

dn+ rp = f ⇒ p =
f − dn
r

(2)

gm+ s = h⇒ s = h− gm (3)
gn+ sp+ t = i⇒ t = i− sp− gn (4)

While solving for r, p, s, and t, (Equations (1) - (4)), we see they are dependent of variables m or n.
Thus, A has infinitely many LU factorizations. A similar argument verifies the case where the second
column is 0.

Case 2: Assume column one and two are linearly dependent, then there exists a real number k such

that A =

a ka g
b kb h
c kc i

 (same as below)

where A2 = kba–kab = 0.

Now if A = LU then,

A =

a ka g
b kb h
c kc i

 =

 1 0 0
m 1 0
n p 1

a ka g
0 r s
0 0 t

 =

 a ka g
am kam+ r gm+ s
an kan+ rp gn+ sp+ t

 .
From this we get the following equations and implications.

b = am⇒ m = b/a. (5)
c = an⇒ n = c/a. (6)
(ka)m+ r = kb⇒ ka(b/a) + r = kb⇒ kb+ r = kb⇒ r = 0. (7)
(ka)n+ rp = kc⇒ ka(c/a) + rp = kc⇒ kc+ rp = kc⇒ (0)p = 0⇒ ∀p ∈ R. (8)
gm+ s = h⇒ s = h− gm. (9)
gn+ sp+ t = i⇒ t = i− sp− gn. (10)

While solving for t, we can observe from Equation (8) that t relies on p which is free to be any
number, resulting in the matrix having infinitely many LU decompositions.

Example 4. The first two columns of the matrix

20 5 9
16 4 7
4 1 3

 are dependent and therefore has infinitely

many factorization for some t. In particluar, we have20 5 9
16 4 7
4 1 3

 =

1 0 0
4
5

1 0
1
5

t 1

20 5 9
0 0 −1

5

0 0 1
5
t+ 6

5

 .
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Example 5. The matrix

0 2 3
0 4 6
0 6 9

 has infinitely many factorizations since the first column is 0.

Notice that if any first (n − 1) column’s entries are all 0, or if any 2 or more of any first n − 1 are
linearly dependent, then there is a principal minor Ak = 0 where k < n.

The following theorem discusses the case of the matrices that have no LU decompositions for both
invertible and singular matrices.

Theorem 3. [Matrices with No LU Decompositions] Let A ∈ Mn, if the first (n − 1) columns are
non-zero and linearly independent and at least one leading principal minor is zero, then A has no LU
decomposition.

Proof. We consider only matrices A ∈M3 and proceed by cases.

Case 1: A1 = 0. Suppose A is given by,

A =

0 d g
b e h
c f i

 =

 1 0 0
m 1 0
n p 1

0 d g
0 r s
0 0 t

 =

0 d g
0 dm+ r gm+ s
0 dn+ rp gn+ sp+ t

 .
Since 0×m = b and b 6= 0, there is no solution for m. Thus, A has no LU factorization.

Case 2: A2 = 0, a 6= 0.

A =

a d g
b e h
c f i

 =

 1 0 0
m 1 0
n p 1

 a d g
0 r s
0 0 t

 =

 a d g
am dm+ r gm+ s
an dn+ rp gn+ sp+ t


where A2 = ae− bd = 0

am = b⇒ m = b/a

an = c⇒ n = c/a

dm+ r = e⇒ r = e–dm = e–(bd/a) = (ae− bd)/a. Since ae− bd = 0, r = 0

dn+ rp = f ⇒ p = (f–dn)/r.

Since r = 0, we cannot solve for the variable p. Therefore, there is no LU decomposition for this
matrix.

Below, we share several examples of matrices with no LU factorization.

Example 6. Although the matrix

4 2 3
6 3 6
5 7 9

 is nonsingular, Theorem 1 tells us that it does not have

an LU Factorization since not all principle minors are nonzero, in particular A2 = 0.

4



North American GeoGebra Journal Volume 9, Number 1, ISSN 2162-3856

Using the setup in Case 2 of Theorem 3, we can use GeoGebra to program the LU decomposition for
any 3×3 matrix as seen at https://www.geogebra.org/m/s8yajtw5. However, for higher
dimensions, it is easier to write a program in javascript to perform the calculations. We constructed
such a program to decompose any n× n matrix into an LU decomposition using row operations [4].
Readers are encouraged to explore the app at https://lyjacky.github.io/ludecomp/
dist.

3 HOW TO APPROXIMATE LU WHEN NO LU FACTORIZATION EXISTS

For a matrix with no LU factorization, we approximate the LU of a “nearby” matrix instead, then take
a limit. The steps in the process follow.

1. Locate the leading principal with linearly dependent columns/rows.

2. Add or subtract ε to any cell from that leading principal minor so that it becomes non-zero.
Thus, there will now be a unique LU decomposition for this new “nearby” matrix.

3. Let ε→ 0.

Example 7. Consider the matrix from Example 6. Let,

A =

4 2 3
6 3 6
5 7 9

 .
Since A2 = 0, we change cell a11 to 3.999 to get

Aε =

3.999 2 3
6 3 6
5 7 9

 .
Aε is a “near-by” matrix of A with LU factorization

Aε =

3.999 2 3
6 3 6
5 7 9

 =

 1 0 0
2000
1333

1 0
5000
3999

−17993
3

1

 3.999 2 3
0 − 1

1333
1998
1333

0 0 8995

 = LεUε.

Note that det(Aε) = det(U) = 3.999 · (−1/1333) · 8995 = −26.985. If we change cell a11 to 3.9999,
then the new det(U) = −26.9985, closer to det(A) = −27. We can see that as ε approaches 0, Aε is
closer to A, and so are their determinants.

4 CONCLUSION

Using this GeoGebra application, we can find the LU decompositions of many square matrices with-
out pivoting. If a matrix has infinitely many LU factorizations, users can arbitrarily select a value
to get an LU decomposition. If, on the other hand, a matrix has no LU factorizations, users can
approximate the LU decomposition by finding the LU decomposition of a nearby matrix.
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APPENDIX - CODE

for(int i = 0; i < dim - 1; i++){
for(int k = i+1; k < dim; k++ ){

for(int m = i+1; m < dim; m++){
if(upper[i][i] == 0 && upper[m][i] != 0 ){

'THERE IS NO LU FACTORIZATION'
}

}
if(upper[i][i] != 0 && upper[k][i] != 0){

multiplier =upper[i][i]/upper[k][i];
lower[k][i] = multiplier;

}else{
if(upper[i][i] == 0 && upper[k][i] == 0){

INFINITELY MANY LU FACTORIZATIONS
multiplier = INPUT FROM USER;
lower[k][i] = multiplier;

}
}

for(int j = 0; j < dim; j++){
row[j] = upper[i][j]*multiplier;

}
for(int r = 0; r < dim; r++){

upper[k][r] = upper[k][r] - row[r];
}

}
Display Lower And Upper
(Perform Matrix Multiplication on L and U)
Display L and U
}
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