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Abstract

The authors describe the necessary constructions for modeling the apparent position of the Sun
in the sky in GeoGebra. In particular, they discuss how to build a planet that moves and rotates
about its axis and a way to position the observer at a given latitude. These computed coordinates
are represented in a celestial sphere where the horizon plane for the observer is fixed, giving the
apparent track of the Sun at different days of the year.

Keywords: GeoGebra, science, planetary motion, paths of the Sun, horizontal coordinates

1 INTRODUCTION

In positional astronomy, we denote the track that our main star follows through the sky over a day
as the “paths of the Sun.” This apparent motion is a consequence of the Earth’s rotation about its
axis and depends on the observer’s latitude. It is well known for a school student that the Sun rises
somewhere in the East, transits at the meridian, and sets somewhere in the West. Thus, if the observer
is sited in the Northern hemisphere and is looking in the South direction, the Sun rises from the left
side and sets on the right side. Less well known to students is that this is reversed in the Southern
hemisphere, where the Sun rises from the right side and sets on the left side.

Most students also know that the altitude of the Sun is higher in the Summer season than it is in the
Winter season. However, in some cases, students do not connect these ideas with the orbital motion
of the Earth around the Sun or with the rotation axis’s inclination from the orbital plane (the angle
between the equatorial and ecliptic plane (Karttunen et al., 2016)). These ideas, along with duration
of day-time and night-time and their dependence on the day of the year and position of the observer,
form the building blocks of our dynamic construction in GeoGebra (Hohenwarter, 2004) and set the
way for students to more fully comprehend these phenomena.

The dynamic construction that we present in this paper models the motion of the Earth around the
Sun and the apparent motion of the Sun in the sky. The sketch enables the students to better grasp the
geometry behind these movements and increases their motivation to study the subject further. Use of
the sketch is not limited to STEM subjects and can be a launching point for interdisciplinary study.
For instance, we have used the GeoGebra applet in various secondary school subjects as part of an
integrated project: Latin and Greek students use the applet as they study of ancient mythology; Geog-
raphy students use it to explore the Sun’s relationship with the Earth; Arts and Crafts students use the

46



North American GeoGebra Journal Volume 8, Number 1, ISSN 2162-3856

applet as they create planispheres and solar clocks; and Physics students use it to better understand
the motion of the moon. Of course, mathematics students use the applet in their study of geometric
modeling.

We model the apparent motion of the Sun in GeoGebra, creating a planet that orbits around the Sun
and setting an observer on the surface of the planet. More specifically, we use a GeoGebra slider to
simulate the planet’s motion around the Sun and the rotation about its axis with proper inclination.
From the observer’s position, students obtain the angle that the position of the Sun subtends with the
horizon plane and the angle that the orthogonal projection of the Sun over the horizon plane subtends
with the meridian. In this way, the applet models the horizontal coordinates of the Sun in its track
through the sky. Later, we use these coordinates to simulate the motion of the Sun in a semi-sphere
in which the horizon of the observer is fixed. The dynamic construction enables the user to modify
the position of the observer on the surface of the planet, thereby showing the students the apparent
movement of the Sun from different latitudes of the planet.

In the construction that we present in this paper, we assume these simplifications:

• The orbit of the planet around the Sun is given by a perfect circle.
• The motion of the planet around the Sun is a uniform circular motion.
• The shape of the planet is a perfect sphere.
• The rotation of the planet around its axis has constant angular velocity.

In addition, we have not synchronized the orbital and rotational motions of the planet. This way, we
simulate planets with annual solar cycles of a reduced number of days. In future developments, we
will include elliptic orbits given by Kepler’s laws (Hasek, 2012), and adjusted values for the Earth’s
angular velocity. With these further developments, we will have the possibility of obtaining the equa-
tion of time and many other calculations from them as the solar analema. Furthermore, modifying the
inclination of the rotation axis (also included in our model) allows modeling the paths of the Sun in
different planets and other associated phenomena derived from the synchrony of the movements such
as Mercury’s rising Sun.

This document focuses on the description of the modeling of the objects in GeoGebra for the simu-
lation. We model a planet with four meridians and orbital and rotational motion. We also model the
inclination of its axis and a horizon in the observer’s position, using North, East, South, and West
directions. These basic objects enable to obtain the horizontal coordinates of the Sun. In the last
section, we model the fixed horizon and the semisphere where the paths of the Sun are simulated.

2 PLANET MODELING

We assume the orbit of the planet to be a circle in the XY plane with radius R. We can describe
this trajectory as x2 + y2 = R2. We denote the position of the center of the planet C and simulate
C(t) = (R cos(t), R sin(t), 0), where t is a parameter, visualized in GeoGebra as a slider, with do-
main 0 ≤ t ≤ 360◦.

We consider the shape of the planet to be a sphere of radius r. We model its surface with the command
sphere(C,r). To appreciate the rotation motion, we model four meridians as circles through the
North pole PN , South pole PS , and specific points in the equator. These specific points P1, P2, P3,
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and P4 are those corresponding to the longitudes 0◦, 45◦, 90◦ and 135◦. Thus, the starting point for
the development would consider

PN = r (0, 0, 1)
PS = r (0, 0,−1)
P1 = r (cos(0◦), sin(0◦), 0)
P2 = r (cos(45◦), sin(45◦), 0)
P3 = r (cos(90◦), sin(90◦), 0)
P4 = r (cos(135◦), sin(135◦), 0)

As our objective is to model the rotation of the planet around its axis, we must define those points on
the equator as a function of the rotation angle θ, a parameter with values 0 ≤ θ ≤ 360◦. The former
definition is thus modified

PN = r (0, 0, 1)
PS = r (0, 0,−1)
P1 = r (cos(0◦ + θ), sin(0◦ + θ), 0)
P2 = r (cos(45◦ + θ), sin(45◦ + θ), 0)
P3 = r (cos(90◦ + θ), sin(90◦ + θ), 0)
P4 = r (cos(135◦ + θ), sin(135◦ + θ), 0)

The rotation axis’s deviation is obtained from modifying the described points from the OZ axis. Our
model assumes that the rotation axis lies in the Y Z plane and that the inclination is measured from the
OZ axis. We denote ε as the deviation angle with 0 ≤ ε ≤ 90◦. We consider the linear transformation
T : R3 → R3 that describes this rotation of ε. The fundamental matrix for the transformation is given
by the images of the vector in the standard basis B = {~e1, ~e2, ~e2}.

T

 1
0
0

 =

 1
0
0

 T

 0
1
0

 =

 0
cos(ε)
− sin(ε)

 T

 0
0
1

 =

 0
sin(ε)
cos(ε)


Thus, the matrix A for the linear transformation T that describes the inclination is

A =

 1 0 0
0 cos(ε) sin(ε)
0 − sin(ε) cos(ε)

 .

The coordinates of the points that we need to model the sphere of the planet are the images of PN ,
PS , P1, P2, P3 and P4 under the previous transformation. We maintain the notation for those points
obtaining

PN = r (0, sin(ε), cos(ε))
PS = r (0,− sin(ε),− cos(ε))
P1 = r (cos(0◦ + θ), sin(0◦ + θ) cos(ε),− sin(0◦ + θ) sin(ε))
P2 = r (cos(45◦ + θ), sin(45◦ + θ) cos(ε),− sin(45◦ + θ) sin(ε))
P3 = r (cos(90◦ + θ), sin(90◦ + θ) cos(ε),− sin(90◦ + θ) sin(ε))
P4 = r (cos(135◦ + θ), sin(135◦ + θ) cos(ε),− sin(135◦ + θ) sin(ε))

Finally, we model the revolution around the Sun translating the previous construction to be centered
at C. Point C tracks the position of the center of the planet. Thus, we have the coordinates that are
used in our modeling.
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PN = C + r (0, sin(ε), cos(ε))
PS = C + r (0,− sin(ε),− cos(ε))
P1 = C + r (cos(0◦ + θ), sin(0◦ + θ) cos(ε),− sin(0◦ + θ) sin(ε))
P2 = C + r (cos(45◦ + θ), sin(45◦ + θ) cos(ε),− sin(45◦ + θ) sin(ε))
P3 = C + r (cos(90◦ + θ), sin(90◦ + θ) cos(ε),− sin(90◦ + θ) sin(ε))
P4 = C + r (cos(135◦ + θ), sin(135◦ + θ) cos(ε),− sin(135◦ + θ) sin(ε))

As Figure 1 suggests, the circle command through three given points represents the meridians
through the poles and the points of the equator. In the construction, we denote those circles as merid-
ians of the planet (mp).

mp1 = circle(PS, P1, PN)
mp2 = circle(PS, P2, PN)
mp3 = circle(PS, P3, PN)
mp4 = circle(PS, P4, PN)

Figure 1. Sphere-planet orbit around the Sun

3 HORIZON MODELING

We model the observer’s position by its latitude φ, and control this with a slider. Unlike the inclination
ε of the planet, measured from the OZ axis, the latitude φ is measured from the XY plane. We set the
domain of this parameter as −90◦ ≤ φ ≤ 90◦. We assume that at the starting time for the simulation
(t = 0, θ = 0), the point P that determines the observer’s position lies in the XZ plane. The initial
coordinates of this point are P0 = r (cos(φ), 0, sin(φ)) .

The coordinates P for the position of the observer may be described as a function of the rotation
angle θ. Given that the fundamental matrix B that describes this rotation as a linear transformation
that depends on θ is

B =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 .

We find the coordinates for the observer’s position as the image of the rotation B · P . Given that
the inclination of the rotation axis is also considered in our model, the coordinates of the observer’s
position are A · B · P0, where A is the fundamental matrix for the inclination previously described.
Furthermore, after translating the construction to be centered at the center of the planet when it orbits
around the Sun, we obtain the final coordinates that use in our model for the position of the observer:
P = C + A ·B · P0. We note this coordinates P , and resume the values in the next figure.
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P = C + r

 cos(θ) cos(φ)
sin(θ) cos(ε) cos(φ) + sin(ε) sin(φ)
− sin(θ) sin(ε) cos(φ) + cos(ε) sin(φ)


We incorporate the cardinal points in our model for the horizon, creating vectors from the observer’s
position indicate North, South, East and West directions. The procedure to obtain the coordinates is
similar to the constructions mentioned above that created the main points of the sphere-planet and the
observer’s position. We begin noticing that if we had an observer at latitude 0, (φ = 0◦), at the initial
moment of the simulation, it would be at the position P = (r, 0, 0). At that position, the North, South,
East, and West directions are

vNorth = (0, 0, 1)
vSouth = (0, 0,−1)
vEast = (0, 1, 0)
vWest = (0,−1, 0)

Thus, the initial position of the observer P0 may be understood as the image of (r, 0, 0) after the
application of a rotation around the OY axis. The fundamental matrix for this rotation is

D =

 cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)


This interpretation provides the means to obtain the North, South, East, and West directions at any
moment of the simulation. The vectors are obtained using the application. The matrix D gives the
rotation around the OY axis, B the rotation around the OZ axis, A the rotation around the OX axis.
Thus, the cardinal directions’ coordinates are the result of the multiplication of matrices D, B, and A
by the corresponding vectors. In particular, the North direction is computed as

vNorth =

 1 0 0
0 cos(ε) sin(ε)
0 − sin(ε) cos(ε)

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 0
0
1


The former calculations for the North direction and the remaining directions result in,

vNorth =

 − cos(θ) sin(φ)
− sin(θ) cos(ε) sin(φ) + sin(ε) cos(φ)
sin(θ) sin(ε) sin(φ) + cos(ε) cos(φ)

 vSouth = −vNorth

vEast =

 − sin(θ)
cos(θ) cos(ε)
− cos(θ) sin(ε)

 vWest = −vEast

We also obtain the position of the zenith after the application of the above transformation to the vector
(1, 0, 0).

vZenith =

 cos(θ) cos(φ)
sin(θ) cos(ε) cos(φ) + sin(ε) sin(φ)
− sin(θ) sin(ε) cos(φ) + cos(ε) sin(φ)


On the horizon of the observer, such directions identify the cardinal points. These points are created
by adding to the position of the observer the already computed vectors. Once the cardinal points are
built, we draw the horizon line at the observer’s position using the command circle through three
points of GeoGebra. In our current simulation, we draw three horizon lines as shown in Figure 2.
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Figure 2. Sphere-planet horizon at the position of the observer

4 HORIZONTAL COORDINATES

The constructions described in the previous sections allow the computation of the horizontal coordi-
nates of the Sun at any moment of the simulation. It is necessary to rescale the sphere-planet’s size
according to the size of the orbit it follows. For the simulations we present in this article, we modify
the planet’s radius r to value zero. The parameter r is visualized in GeoGebra as a slider with a null
lower bound. The reader and students will likely appreciate that our modeling permits this modifica-
tion because it collapses the sphere planet’s main points and the meridians circles to the center C of
the planet. Furthermore, the North, South, East, and West directions are still computable, and so are
the cardinal points, which permits the computation of the horizon plane for the observer.

We build this horizon plane for the observer with the command plane through three points. The
necessary points are three out of the four cardinal points built in Section 2. We make the orthogonal
projection of the Sun over this plane and denote it PSun. The orthogonal projection is given as the
intersection of the horizon plane with the Sun’s line with direction vZenith. Note that this direction is
orthogonal to the horizon plane. Thus

PSun =

{
πhorizon ≡ plane(North,East, South)
rorthogonal ≡ Sun+ [vZenith]

A horizontal framework for the stars’ position takes the South direction as a reference for calculations.
Care must be taken because other fixed directions may be used in other frameworks (Karttunen et al.,
2016; Ası́n, 1990). The azimuth A is the angular distance of a star’s orthogonal projection from the
South direction. This angle is measured counter-clockwise and can be calculated with the command
angle in GeoGebra.

AzimuthSun = A = angle(South, P, PSun)

We note that GeoGebra returns the angle 0 ≤ A ≤ 180◦. In our construction, we measure that angle
counter-clockwise (i.e., positive when the measure goes from South to East). We further note, it is
convenient to identify the azimuth sign because it provides information about the semi plane. The
Sun’s vertical is positive for the East semi plane and negative for the West semi plane.

A numerical method to obtain this information is to cross-product vector vSouth with vector
−→
PP Sun

(vector from position P to the vertical of the Sun PSun). The result is a normal vector to the horizon’s
plane and thus parallel to the vector vZenith. In case this cross-product has the same direction of
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vZenith the sign of the azimuth is positive, and in case it has the opposite direction, the sign of the
azimuth is negative. The comparison of directions can be made comparing the signs of the first
components of both vectors.

sign(A) =

 1 if direction
(
vSouth ⊗

−→
PP Sun

)
= direction (vZenith)

−1 if direction
(
vSouth ⊗

−→
PP Sun

)
6= direction (vZenith)

In this manner we obtain the first horizontal coordinate for the position of the Sun.

AzimuthSun = sign(A)A

The second horizontal coordinate is the altitude or elevation, a, of the Sun. This altitude is the
angular distance of the position of the Sun from the plane of the horizon. As this angle is measured
from the horizon plane, its value lies in the range [−90◦, 90◦]. In our work, we compute this angle
as a = 90◦ − β, where β is the zenith distance, the angular distance of the position of the Sun with
the vertical direction vZenith. This calculation directly provides the correct sign for the Sun’s altitude,
being positive during day-time and negative during night-time.

AltitudeSun = a = 90◦ − angle
(−→
PP Sun, vZenith

)
Figure 3 is taken from our construction and shows the planet reduced to a single point and the angles
we calculate during the simulation: angle A is where the vertical of the Sun subtends with the South
direction and angular elevation a where the Sun subtends with the horizon.

Figure 3. Angles for calculating horizontal coordinates

5 PATHS OF THE SUN

To model the paths of the Sun, we must build a fixed horizon for the observer and model from this
observer the position of the Sun using the horizontal coordinates azimuth and altitude described in the
previous section. We note that those coordinates depend on the variables t and θ (declared as sliders
in GeoGebra), that parameterize the orbital motion and the rotation of the sphere-planet around its
axis. Thus the coordinates are functions of these variables (A(t, θ) and a(t, θ)). The animation of the
sliders permits the simulation of the paths of the Sun.

In our work we denote this fixed horizon as the model for the simulation. For its construction we
build a plane parallel to the XY plane at a height (π ≡ z = k) such that in the same GeoGebra
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graphic view both the representation of the orbital motion of the planet and the paths of the Sun in
the model can be seen at the same time. In that plane we declare point Q = (0, 0, k) as the po-
sition of the observer. In the same plane we select cardinal points at a distance rC from point Q.
These cardinal points of the model are fixed, and we build them directly as QNorth = (rC , 0, k),
QEast = (0, rC , k), QSouth = (−rC , 0, k) and QWest = (0,−rC , k). In the same way we build a
zenith point, as QZenith = (0, 0, k − rC).

These cardinal points permit the construction of the meridian and the first vertical. We build the
inter-cardinal points for representing two additional vertical planes.

QNW =

(
rC

√
2

2
, rC

√
2

2
, k

)
,

QSW =

(
−rC

√
2

2
, rC

√
2

2
, k

)
,

QSE =

(
−rC

√
2

2
,−rC

√
2

2
, k

)
, and

QNE =

(
rC

√
2

2
,−rC

√
2

2
, k

)
.

Using the command arc through three points of GeoGebra we represent the meridians above the
horizon. Similarly, we use the command circle through three points to represent the horizon line
in the simulation model.

In the model that we are building the North direction coincides with the OX axis and the West
direction with the OY direction. As the azimuth coordinate is measured with respect to the South
direction, we model the apparent path of the Sun shifting the variable 180◦. Thus the path of the Sun
is given by the next spherical coordinates depending on A and a.

QSun = Q+ rC

 cos(a) cos(A+ 180◦)
cos(a) sin(A+ 180◦)

sin(a)


Next, we show examples of our simulation of the paths of the Sun from a position of 40◦ and from the
North pole position. Figure 4a shows the paths of the Sun during the summer solstice. Figure 4b show
the path of the Sun during the vernal equinox and Figure 4c during the winter solstice. In Figure 4d
we can see the paths of the Sun during the summer solstice from the position of an observer situated
in the North Pole. The reader may observe that the Sun does not set along the day, a phenomenon that
lasts for six months. In our simulations, the elevation of the Sun at the North pole ranges between
22.5◦ and 24.5◦.

6 DIDACTIC EXPERIENCES AND CONCLUSIONS

The dynamic construction we have presented in this paper was developed by the authors to improve
the visual and spatial reasoning of the students in a multidisciplinary project that took place over an
entire academic year. The aim of the project was to motivate the student to study STEM subjects,
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(a) During the summer solstice (b) During the vernal equinox

(c) During the winter solstice (d) From the North pole
Figure 4. Paths of the Sun

emphasizing their connection with many other disciplines, typically considered non-scientific. As-
tronomy was the chosen subject for this goal. Our exploration took advantage of alternative methods
of thinking (Guzmán, 1994) and essential technological tools in education (Hohenwarter, 2004; Chan,
2013). In particular, the dynamic tools for the “paths of the Sun” were used in one of our sessions,
where the motion of the Earth and the apparent motion of the Sun in the sky were explained. We
used the sketch in conjunction with physical demonstrations using globes with students in a circle to
answer questions such as:

• Where are you if the Sun rises from your right and sets on your left?
• How will the Sun behave if you are situated on the equator?
• Is the Sun higher in France or Spain during the summer?

A final evaluation of the project gave us important insight about the increased motivation that our
students acquired. Of course part of the merit comes from the project itself, and part of the merit from
the possibility of using this geometrical constructions that GeoGebra provides.
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APPENDIX: LIST OF SYMBOLS

Symbol Definition
R radius of orbital motion
r radius of sphere-planet
rC radius of celestial sphere
t Slider to model orbital motion 0 ≤ t ≤ 360◦

θ Slider to model rotation of the sphere-planet 0 ≤ θ ≤ 360◦

ε Slider for the inclination of the rotation axis 0 ≤ ε ≤ 90◦

φ Slider for the latitude of the observer −90◦ ≤ phi ≤ 90◦

C Center of the planet
P Position of the observer
PN North pole of the sphere-planet
PS South pole of the sphere-planet
P1 Equator point of longitude 0◦ in the sphere-planet
P2 Equator point of longitude 45◦ in the sphere-planet
P3 Equator point of longitude 90◦ in the sphere-planet
P4 Equator point of longitude 135◦ in the sphere-planet
PN North point in the horizon of the observer
PS South point in the horizon of the observer
PE East point in the horizon of the observer
PW West point in the horizon of the observer
Sun Sun position : origin of coordinates (0, 0, 0)
PSun Orthogonal projection of the Sun over the horizon
QSun Apparent position of the Sun in the model
Q Position for the observer in the model
QN North position in the model
QNE North-East position in the model
QE East position in the model
QSE South-East position in the model
QS South position in the model
QSW South-West position in the model
QW West position in the model
QNW North-West position in the model
mp1 Meridian of the sphere-planet through point P1

mp2 Meridian of the sphere-planet through point P2

mp3 Meridian of the sphere-planet through point P3

mp4 Meridian of the sphere-planet through point P4

A Inclination matrix of the rotation axis
B Rotation matrix of the sphere-planet
D Rotation matrix of the latitude of the observer

56



North American GeoGebra Journal Volume 8, Number 1, ISSN 2162-3856

Symbol Definition
vNorth North direction from position P
vSouth South direction from position P
vEast East direction from position P
vWest West direction from position P
vZenith Zenith direction from position P
πhorizon Plane of the horizon of the observer
rorthogonal Orthogonal line to the horizon through the Sun

A Azimuth of the Sun form the South −180◦ ≤ A ≤ 180◦

a Elevation of the sun −90◦ ≤ a ≤ 90◦
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