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Abstract
In this paper, we use complex-number operations to carry out transformations of points and
graphs of functions and establish connections between geometry and algebra in the high-school
curriculum. We use dynamic geometry software to visualize the geometric effect of these algebraic
operations and connect complex-number operations to translations, rotations, and dilations.
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1 INTRODUCTION

Students typically first encounter complex numbers when solving quadratic equations, that is equa-
tions of the form ax2 ` bx ` c “ 0 where a, b, and c are real numbers with a ‰ 0. For instance,
applying the quadratic formula, x “ ´b˘

?
b2´4ac
2a

, to 3x2` x` 5 “ 0, they determine that the discrim-
inant, b2 ´ 4ac “ ´59 is negative. Many times, students are told “they cannot take the square root
of a negative number.” Later on, students learn that it is possible to take the square root of a negative
number and, in particular, i “

?
´1, or equivalently i2 “ ´1. We call i an imaginary or complex

number. A complex number is of the form z “ a` bi, where a and b are real numbers and i satisfies
i2 “ ´1.

The Complex Number System appears in the Common Core State Standards for Mathematics (CCSS-
M) in Number and Quantity, High School. Students learn to perform complex number operations and
represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on
the complex plane (CCSS. Math.Content.HSN.CN.B.5). In this paper, we use these complex-number
operations to carry out transformations of points and graphs of functions. We seek to establish con-
nections between geometry and algebra in the high-school classroom. During our discussion, we use
the dynamic geometry software, GeoGebra (Hohenwarter, 2002) to visualize the geometric effect of
these algebraic operations. We start by providing some historical comments on complex numbers.
Next, we connect some complex-number operations with their corresponding geometric transforma-
tion. We conclude the paper with reflections on our work with teachers and students.

2 HISTORICAL NOTES ON COMPLEX NUMBERS

Many have written about the solution of the cubic equation and our historical notes stem from Dun-
ham’s work (1990). Historically, Gerolamo Cardano’s (1501-1576) work on the solution of the gen-
eral cubic equation helped to give complex numbers a legitimate place. Cardano solved the general
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cubic equation, x3 ` px2 ` qx ` r “ 0 in 1545 by using the substitution z “ x ´ p
3

to eliminate the
quadratic term, thus obtaining a “depressed” cubic, z3 ` bz ` c “ 0. Next, he applied the formula
obtained from Niccolo Fontana (1500-1557) to solve the depressed cubic. Scipione del Ferro (1465-
1526) had also derived this formula 30 years earlier but had not published it. Both Fontana and del
Ferro showed that one of the solutions of x3 ` bx` c “ 0 is given as

x “
3

d

´
c

2
`

c

c2

4
`
b3

27
´

3

d

c

2
`

c

c2

4
`
b3

27

In particular, when Cardano solved polynomials such as x3 ´ 6x ` 4 “ 0 we note that the solution
given by the formula is x “ 3

a

´2`
?
´4 ´ 3

a

2`
?
´4. One can easily check that x “ 2 is a

solution and use algebra to show that the two other solutions are x “ ´1˘
?
3. Thus the number

x “
3

b

´2`
?
´4´

3

b

2`
?
´4

corresponds to one of these solutions. As a matter of fact, x “ 3
a

´2`
?
´4´ 3

a

2`
?
´4 “ 2.

Thus, as Cardano would have put it, 2 was “disguised” as x “ 3
a

´2`
?
´4 ´ 3

a

2`
?
´4. Yet it

would be another two centuries before Euler, Gauss, and Cauchy made it evident that complex num-
bers were an important and vital part of the mathematical landscape. In the next sections, we discuss
how complex-number operations are related to geometric transformations. We start with complex-
number addition and their relationship to translations.

3 REVIEW OF COMPLEX NUMBER OPERATIONS

We recall that a complex number, z “ a`bi, has two parts the real part, a, which is denoted by Repzq,
and the imaginary part, b, which is denoted by Impzq. When we add or subtract complex numbers,
say z1 “ a1` b1i and z2 “ a2` b2i, we add the real part of z1 to the real part of z2 and the imaginary
part of z1 to the imaginary part of z2. In other words, z1 ` z2 “ pa1 ` a2q ` pb1 ` b2qi. This is very
similar to how we add vectors, which is component-wise. That is the sum of vectors p a1b1 q and p a2b2 q is
defined to be

p
a1
b1 q ` p

a2
b2 q “

`

a1`a2
b1`b2

˘

.

Recall that subtraction of complex numbers is defined similarly, that is z1´z2 “ pa1´a2q`pb1´b2qi,
which is again analogous to how we subtract vectors. This is why it is possible to identify the set
of complex numbers to the set of vectors on a plane. Hence we can identify the complex number
z1 “ a1 ` b1i to the vector p a1b1 q.

To multiply complex numbers z1 “ a1 ` b1i and z2 “ a2 ` b2i we recall that we distribute as when
we multiply binomials, and then use the fact that i2 “ ´1, to collect like terms. That is,

z1 ¨ z2 “ pa1 ` b1iq ¨ pa2 ` b2iq

“ a1a2 ` a1b2i` b1a2i` b1b2i
2

“ a1a2 ´ b1b2 ` pa1b2 ` b1a2qi

For completeness we recall that when we ask students to divide complex numbers we ask them to write
the quotient as a complex number. This means that when we divide z1 “ a1 ` b1i by z2 “ a2 ` b2i
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we multiply the ratio z1
z2

by z2
z2

, where z2 “ a2´ b2i is called the complex conjugate of z2. This means
that

z1
z2
“
a1 ` b1i

a2 ` b2i
¨
a2 ´ b2i

a2 ´ b2i

“
a1a2 ` b1b2 ` pa2b1 ´ a1b2qi

a22 ` b
2
2

.

Readers can relate this approach to the “rationalize the denominator” technique.

4 CONNECTING ADDITION AND SUBTRACTION WITH TRANSLATIONS IN THE COMPLEX
PLANE

Students usually understand that to translate a point in the plane horizontally, they need to add a num-
ber to, or subtract a number from the x-coordinate of the point. Similarly, to translate a point in the
plane vertically, students will add or subtract a number from the y-coordinate. This idea parallels the
geometric interpretation of addition and subtraction of complex numbers. We begin by exploring how
the operations of addition and subtraction are represented in the complex plane. Next, we discuss a
more general case of transformations of a plane.

Take two complex numbers, say z1 “ 1` 2i and z2 “ 4` i (Note: To type z1 in GeoGebra we enter
z 1 in the Input box at the bottom of the screen.) The Algebra View displays them in symbols while
the Graphics Views shows them as points (Figure 1).

Figure 1. Representing complex numbers on the plane.

To determine the sum of the two complex numbers z1 and z2, we enter z3 “ z1 ` z2 in the Input box.
The software automatically displays the sum z3 with a label on the complex plane (Figure 2).
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Figure 2. The sum of z1 and z2 represented in the complex plane.

We now observe the geometry of adding two complex numbers. In Figure 3 we formed a quadrilat-
eral by connecting the four complex numbers,z0, z1, z2, and z3, where z0 is the complex number 0`0i.

Figure 3. Algebraic and geometric sum of complex numbers.

Readers can recognize that the sum of complex numbers is related to vector addition, where the sum
of the vectors corresponding to p 12 q and p 41 q is the vector p 53 q and the quadrilateral is a parallelogram,
as we shall see later. Thus we can see how complex numbers provide a geometric connection to vector
addition since p1 ` 2iq ` p4 ` iq “ p1 ` 4q ` p2i ` iq “ 5 ` 3i. Figure 3 also shows in the Algebra
panel the length of each segment of the quadrilateral connecting two complex numbers. As we can see
l1 represents the length between z0 and z1, l2 represents the length between z0 and z2, l3 represents
the length between z1 and z3, and l4 represents the length between z2 and z3. We observe that the
opposite sides of the quadrilateral are congruent, that is l1 “ l4 and l2 “ l3 thus the quadrilateral is
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a parallelogram. We label the length of each segment in the Graphics panel using modulus notation.
The modulus of a complex number a` bi is denoted by |a ` bi| and defined as |a` bi| “

?
a2 ` b2,

that is it can be viewed as the distance of the complex number to the origin. The importance of the
modulus will be discussed in the section on multiplication and division of complex numbers.

Similarly, to determine the difference of the same complex numbers z1 and z2, we enter in the in-
put box, z4 “ z1´ z2. The software automatically displays the difference with a label on the complex
plane and we used a different color (right click on the object and scroll down to Properties – this will
open a box that will allow you to color the object) when drawing the segment from the origin to z4 to
distinguish this segment from the others (Figure 4). We also computed the difference z5 “ z2 ´ z1.
This segment is also distinguished with a different color. Note that l6 “ |z4| and l7 “ |z5|.

Figure 4. Algebraic and geometric difference of complex numbers.

We briefly comment that the difference of two complex numbers is related to the Triangle Midsegment
Theorem to demonstrate one of many possible extensions that can be pursued using the geometry of
complex numbers. Recall that the Triangle Midsegment Theorem states that the segment joining the
midpoints of any two sides of a triangle will be parallel to the third side and half the length of the third
side. Thus if we connect z4 to z1, z5 to z2, and z1 to z2, with segments l8, l9, and l10, respectively, we
observe that indeed the segments l6, l7, and l10 are congruent (Figure 5).
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Figure 5. An illustration of the Triangle Midsegment Theorem with complex numbers.

One last note about subtraction – indeed the simplest way to think of subtraction of two complex
numbers is that the opposite of the second complex number is being added to the first. In other words

z4 “ z1 ´ z2 “ z1 ` p´z2q.

Note that this also coincides with how we explain vector subtraction, giving us yet another connection
between algebra and geometry. We invite readers to drag complex numbers z1 or z2, and observe how
the parallelogram changes. As you do so, reflect on the connections to vector addition and subtrac-
tion. In the next section, we use complex numbers to translate graphs of functions in the software.

5 COMPLEX-NUMBER ADDITION AND TRANSLATIONS OF A GRAPH

Remember that we can identify a complex number a`bi to the point pa, bq in the complex plane. This
will be a very useful representation as we continue exploring. On the real plane we graph a function,
say fpxq “ x2, by plotting the points px, fpxqq. By doing this, we conceptualize the function as a
mapping from the real numbers to the real numbers. The same graph with points px, fpxqq plotted on
the complex plane corresponds to a different interpretation: the inputs are the real part of the complex
number x` ix2 while the outputs are the imaginary part of the same complex number.

To translate the graph of the function we shift each of the points on the graph. For example, to shift
one unit to the right and two units up, we add one unit to the x-value and two units to the y-value, thus
obtaining points of the form px` 1, fpxq ` 2q. We can use the tools in the software to shift the graph
of a function as described above. First, graph fpxq “ x2 by typing fpxq “ x2 in the Input box (see
Figure 6). Then, construct a point A on the graph of fpxq using the Point tool. Note that the software
uses the notation pxpAq, ypAqq to describe the point A on the graph of fpxq “ x2. Next, construct
another point B on the plane. This point has coordinates pxpBq, ypBqq. Define in the Input box a
point C as C “ pxpAq` xpBq, ypAq` ypBqq. We drag the point A using the Move tool (pointer) and
see the effect on the point C, the translation of A by the point B.
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Figure 6. Constructing a translation of point A on the graph of fpxq.

Next, we use another dynamic geometry software tool, Locus (on the 4th button from the left), to
produce the result of shifting the whole graph. The software provides directions on how to use this
tool (see Figure 7). We first select the point C, then point A, and the software provides the resulting
graph (see Figure 8). We invite readers to drag the entire graph of fpxq, or the point B, using the
Move tool and consider the horizontal and vertical translations given by the coordinates of the point
B . Furthermore, we can easily redefine fpxq by simply typing another function in the Input Box. For
instance, try a “depressed” cubic such as fpxq “ x3 ´ x ´ 1. Notice that it has one real solution and
two complex solutions. We now shift our focus to discuss the connections between the operations of
multiplication and division of complex numbers with rotations and dilations of the plane.

Figure 7. Locus command on GeoGebra.
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Figure 8. Translation of the graph of fpxq “ x2.

6 CONNECTING MULTIPLICATION WITH TRANSFORMATIONS IN THE COMPLEX PLANE

We start our discussion with a particular situation – consider the complex number z1 “ 1 ` 2i and
multiply it by the complex number z2 “ 0 ` i. We enter both of them in the Input box using the
notation we introduced in the previous sections. To obtain the product of these two complex numbers
we type z 3=z 1*z 2 in the Input box. See the resulting product in Figure 9. Note the relationship
between z1 and z3: it appears that z3 is the point obtained by rotating z1 90˝ counterclockwise about
the origin. If you need extra data to make this conclusion, drag the complex number z1 and observe
the position of z3. We suggest you consider the coordinates of both z1 and z3.

Figure 9. Multiplication of a complex number by i.

We now focus on changing z2. Consider the effect of multiplying by z2 “ 0 ` 2i instead. In other
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words, we translate z2 one unit up vertically. In this case, z3 is the product of z1 by 2i. Before contin-
uing consider the following question What is similar and what is different when multiplying by 2i than
when multiplying by i? You are on the right track if you thought that z3 is again a 90˝ counterclock-
wise rotation of z1 about the origin. However, somehow z3 has also shifted away from the origin (see
Figure 10). How far is z3 from the origin and how can we determine this using what we know about
z2? If we compare the moduli of z1 and z3, we note that |z3| “ 2 ¨ |z1|. Before continuing, drag z1 to
points where you can focus on its coordinates. Next, consider the question Would a similar situation
occur if we continue moving z2 along the y-axis? Try it!

Figure 10. Multiplication of a complex number by 2i.

We again note that z3 is a 90˝ counterclockwise rotation of z1 about the origin and that its modulus
changes by a factor of |z2|. Let’s move z2 again – this time to the complex number 1 ` i. If we
consider the modulus of z2 (construct the segment from the origin to z2), the software displays about
1.44. Can you guess what this number is? Let’s compute the following ratio: |z3|

|z1|
(see Figure 11),

by entering ratio = l 2/l 1 in the Input box, where l2 “ |z3| and l1 “ |z1|. Some readers may
observe that

|z3|

|z1|
« |z2| “

?
2.

Is this true? If we move z2 about the complex plane, is it always true that |z3|
|z1|
“ |z2|? This is a great

opportunity to recall the polar representation of a complex number z “ a ` bi. Namely, z can be
represented as z “ rpcos θ ` i sin θq, where r “

?
a2 ` b2 and θ is the angle of the counterclockwise

rotation about the origin from the point pr, 0q to the point pa, bq. The polar representation is particu-
larly useful to compute the product of two complex numbers. The product of the complex numbers
z1 “ r1pcos θ1 ` i sin θ1q and z2 “ r2pcos θ2 ` i sin θ2q is given by:

z1 ¨ z2 “ rr1pcos θ1 ` i sin θ1qs ¨ rr2pcos θ2 ` i sin θ2qs

“ r1 ¨ r2rcospθ1 ` θ2q ` i sin θ1 ` θ2qs.

In Figure 11 we have that z3 “ z1 ¨ z2, which is why the moduli of the product, z3, is a dilation of the
moduli of z1 by a factor of r2, and the angle of the rotation from z1 to z3 about the origin is θ2.
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Figure 11. Multiplication of a complex number by 1` i.

In our examples above, we can provide a mathematical justification of the 90˝ counterclockwise rota-
tion about the origin and why the modulus of z1 changes by a factor of |z2|. Note that we can reverse
the roles played by z1 and z2 in the above discussion due to the commutative property of multiplica-
tion. In the next section, we use complex number multiplication to rotate graphs. Again, we use the
power of the locus tool to produce the resulting graph.

7 ROTATION OF A GRAPH USING A COMPLEX NUMBER

Imagine that we want to rotate the graph of the function fpxq “ x2 by an angle of 45˝ counterclock-
wise about the origin. We now understand enough so that our initial idea might be to multiply the
complex number z “ x ` iy by the complex number z1 “ 1 ` i since the argument of the complex
number z1 is 45˝. Consider a complex number A with coordinates pxpAq, ypAqq, and multiply it by
the complex number 1` i as follows:

rxpAq ` iypAqs ¨ r1` is “ xpAq ` iypAq ` ixpAq ´ ypAq

“ rxpAq ´ ypAqs ` irxpAq ` ypAqs.

Thus, to rotate a point A with coordinates pxpAq, ypAqq on the graph of fpxq “ x2 by 45˝ counter-
clockwise about the origin, we just need to apply the transformation

`

xpAq ´ ypAq, xpAq ` ypAq
˘

.
We now provide directions to do it with the software. Construct first the graph of fpxq “ x2. Next,
construct a point A on the graph of fpxq “ x2. Type in the Input box the following command:
B=(x(A)-y(A), x(A)+y(A)). Now to rotate the graph of fpxq, we use the Locus tool, clicking
on B first and then on A. The software then creates the “desired” parabola (see Figure 12). Readers
may notice that points A and B are not equidistant to the origin.
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Figure 12. Initial attempt at rotating the graph of fpxq “ x2 by 45˝ counterclockwise using complex
number multiplication.

We recall that the point B is not only a rotation of point A, but also a dilation by a factor of
?
2 “

|1`i|. Thus our parabola is not only a rotation of fpxq “ x2 about the origin by 45˝ counterclockwise,
but also a dilation by a factor of

?
2. How do we address this issue? We “normalize” our complex

number z1, that is we divide z1 by
?
2, and use this new complex number to obtain the following

transformation that is only a counterclockwise rotation about the origin by 45˝:
ˆ

1
?
2
pxpAq ´ ypAqq,

1
?
2
pxpAq ` ypAqq

˙

Note that it is nearly impossible to tell the difference in the graphs in Figure 12 and Figure 13. If we
look closely, we see that indeed there is a difference between the transformed graph in Figure 12 and
the transformed graph in Figure 13. Note that the transformed graph in Figure 12 passes through the
point p0, 2q whereas the transformed graph in Figure 12 does not. Thus if we just want to rotate the
graph by 45˝ we must normalize the number that we want to multiply by. This indeed can be a great
way of introducing the idea of normalization before covering vectors. Again, we can easily redefine
the function fpxq in the Input box. Try fpxq “ sinpxq first, and fpxq “ 1

x
, next.
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Figure 13. Rotating the graph of fpxq “ x2 by 45˝ counterclockwise using complex number multi-
plication.

8 CONCLUSIONS

In this paper, we have illustrated how dynamic geometry software can help us visualize and therefore
connect complex numbers with their geometric interpretation. Specifically, we applied addition (and
subtraction) of complex numbers to translate mathematical objects, and multiplication of complex
numbers to rotate and dilate mathematical objects. We invite readers to investigate the effect of divid-
ing by a complex number. Another set of transformations to consider are reflections – if addition and
subtraction of complex numbers are related to translations and multiplication and division of complex
numbers are related to dilations and rotations, how are complex numbers related to reflections? We
suggest to start by considering how complex numbers are related to reflections about the x- and y-axis.

We have presented these ideas to current and future secondary teachers either in classes or in profes-
sional development workshops. In general, teachers are able to perform complex number operations
symbolically but when we ask them to describe the geometry of the operations they are usually able to
connect addition with translations but do not appear to be familiar with a geometric interpretation of
multiplication and division. In particular, teachers recognize how empowering the dynamic software
is to help them visualize and understand formulas they have used.

Of course, a question that has been asked of us in the past is why this connection is considered
important in the standards. To many this connection seems to not have any real-world or pedagogical
benefits. We beg to differ as research suggests that multiple representations of mathematical concepts
can develop a deeper understanding of the concept. Yet unknown to most, there is an application in the
real world that can also serve as an introduction to the concepts of matrices and vectors. Indeed, this
connection between algebra and geometry has led to many developments in image processing and
understanding how complex numbers can be represented geometrically can help in gaining a basic
understanding of these developments. In a paper in progress, we discuss such a relationship between
matrices, transformations, complex numbers, and applications. In the meantime, we hope that you
feel compelled to try this approach in your classroom and see how students react when being able to
visualize complex number operations with dynamic software.
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