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Abstract

Technology has changed the nature of mathematics learning and instructional practices (An-
dreasen and Haciomeroglu, 2013; Edwards, 2015; Haciomeroglu, Bu, Schoen, and Hohenwarter,
2011). Dynamic and interactive technology enriches students’ learning opportunities and shifts
the focus of instruction to understanding and student-centered learning by providing a means
of modeling mathematical relationships (Bu and Henson, 2016; Haciomeroglu, Bu, Schoen, and
Hohenwarter, 2011). The authors connect Euclidean and non-Euclidean geometries through an
exploration of rich tasks of Taxicab geometry, sharing methods for organizing and presenting
tasks to enhance students’ understanding of geometry concepts.
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1 TAXICAB GEOMETRY

Taxicab geometry is a non-Euclidean geometry in which distance is determined as a taxicab drives
in an ideal city with a rectangular grid of streets, not as the crow flies as in Euclidean geometry. For
instance, in the Euclidean geometry, the distance between the points Op0, 0q and P p3, 3q is 3

?
2 (d “

a

pp3´ 0q2 ` p3´ 0q2q), and in the Taxicab geometry, the distance is 6 units ( d “ |3´ 0| ` |3´ 0|).
In the Euclidean geometry, there is only one line with the distance of 3

?
2 units from O to P . How-

ever, in the Taxicab geometry, there are many routes to connect the given points O and P . As seen in
Figure 1, the routes (i) O Ñ AÑ P , (ii) O Ñ B Ñ P , and (iii) O Ñ C Ñ D Ñ E Ñ F Ñ GÑ P
add up to 6 units. Even if an arbitrary point along the side of the square is chosen to take smaller
steps, the distance (e.g., O Ñ H Ñ I Ñ J Ñ D Ñ K Ñ L Ñ M Ñ F Ñ N Ñ Q Ñ R Ñ P )
remains the same.

The Taxicab geometry differs from Euclidean geometry in just one axiom–Side-Angle-Side Similar-
ity (SAS) axiom (Krause, 1986). Consider the isosceles right triangles 4ABC and 4BDC shown
in Figure 2. Assuming that angles in the Taxicab geometry are measured the way that angles are
measured in the Euclidean geometry, 4ABC is an isosceles right triangle with two legs of length 4
and hypothenuse of length 8, whereas 4BDC is also an isosceles right triangle with legs of length
4 but with hypothenuse that is also length 4. These two triangles satisfy the SAS theorem but are
not similar in Taxicab geometry. Moreover, The triangle 4BDC is an equilateral triangle but is not
equiangular (Malkevitch, 2007).
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Figure 1. Euclidean and Taxicab distances.

Figure 2. Side-Angle-Side (SAS) axiom.

For students who are familiar with Euclidean geometry and the coordinate plane, Taxicab geometry
is easy to understand. For instance, a circle is the set of all points equidistant from a given point in
both geometries. However, the set of all points that are equidistant from a point in Taxicab geometry
resembles a square in Euclidean geometry due to the definition of distance. As seen in Figure 3, all
points on the square are 2 “Taxicab” units from A.
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Figure 3. A Taxicab circle.

Consider the following problem taken from Taxicab Geometry (Krause, 1986, p. 14). The reader
may wish to create representations for the task and reflect on his or her own thinking processes before
reading our explanations:

The Apartment Problem. Alice and Bruno are looking for an apartment in Ideal City.
Alice works as an acrobat at amusement park A “ p´2, 3q. Bruno works as a bread tester
in bakery B “ p1,´4q. Being ecologically aware, they walk wherever they go. They
have decided their apartment should be located so that the distance Alice has to walk to
work plus the distance Bruno has to walk to work is as small as possible. Where should
they look for an apartment?

Examples of possible routes between two workplaces (e.g., A Ñ C Ñ B, A Ñ E Ñ F Ñ G Ñ

H Ñ B, and A Ñ D Ñ B) are shown in Figure 4. As seen in the figure, the Taxicab distance
between the points A and B is 10 units; thus, the sum of the distance of the apartment from A and the
distance of the apartment from B cannot not be smaller than 10 units. Before attempting to solve The
Apartment Problem with students, we suggest solving related tasks with distances provided. Tasks of
this sort will help students more fully understand The Apartment Problem and help them solve it.

To attack The Apartment Problem, let’s begin by assuming that Alice and Bruno want to walk the
same Taxicab distance to work. In other words, they want to rent an apartment, which is 5 units from
A and 5 units from B. If the set of all points at 5 taxi-distance units from A and B are graphed, two
Taxicab circles are formed. This is illustrated in Figure 5.
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Figure 4. Taxicab distance between points A and B.

Figure 5. Alice and Bruno’s Taxicab circles.

As seen in Figure 5, the points Cp´2,´2q and Dp1, 1q are 5 units from both work places. The im-
portant question to consider, however, is “Are the points of the line segment CD also 5 units from A
and B?” In other words, can they rent an apartment at any point on the line segment? The answer is,
yes! In fact, they can rent an apartment at any point on the line segment connecting the points C and
D. Every point on that line segment is 5 units from A and 5 units from B, therefore, the sum of the
distances from any point on the line segment to the points A and B is 10 units.
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Since this first scenario only included living an equal distance between the work locations, one still
must consider what would happen if they decided to rent an apartment closer to Alice’s workplace or
closer to Bruno’s workplace. For instance, say they want to rent an apartment which is 4 units from
A and 6 units from B. In this case, they should look for an apartment between the points Cp´2,´1q
and Dp1, 2q (see Figure 6a).

(a) Closer to Alice’s workplace. (b) Taxicab ellipse
Figure 6

What if the apartment is 3 units from A and 7 units from B? Can you begin to visualize the solution
without drawing the Taxicab circles? What if Alice walks farther than Bruno? Do you see a pattern?
What does the solution set look like?

Typically, it’s difficult for high school students to visualize two changing objects. For this reason,
we used GeoGebra to design an interactive worksheet (available at http://bit.ly/taxicab-
sketch) that enables students to draw and modify two Taxicab circles simultaneously with a slider
tool, providing an opportunity to explore all variations of the problem. When the intersecting sides of
the Taxicab circles were traced for varying distances from A and B (all with a total of 10 units), the
shaded rectangle ABCD was formed (see Figure 6b). This is referred to as a Taxicab ellipse, or the
figure formed by all points where the sum of the distance to two points, the foci, is the same. In this
example, the foci were in a diagonal position in relation to each other, and the sum of the distance to
the two points A and B was the same as the distance between the points (namely, 10 units).

1.1 Questions for Further Thought

Using the GeoGebra sketch (see http://bit.ly/taxicab-sketch), consider the following
in Taxicab geometry.
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What happens if the points A and B (i.e., foci) are still in a diagonal position, but the sum of
distances from the points is greater than the distance between the points?

What if the points are in a vertical (or horizontal) position but the sum of distances from the
points A and B (or foci) is equal to the distance between the points?

What if the points are in a vertical (or horizontal) position but the sum of distances from the
points A and B (or foci) is greater than the distance between the points?

(a) Another Taxicab ellipse. (b) Euclidean ellipse.
Figure 7

2 SUGGESTIONS FOR TEACHERS

Teachers can pose additional challenges to develop students’ understanding of both Taxicab and Eu-
clidean ellipses (see Figures 7a and 7b). For example, given the solution of the problem in Taxicab
geometry, students might be asked to use Euclidean geometry (or distance) to show what the solu-
tions look like with two different definitions of distance—the Taxicab definition and the Euclidean
definition.

Using the Taxicab geometry can provide avenues into understanding geometric reasoning which com-
plements Euclidean geometry. Students can relate to geometry that is modeled by taxicabs, and we
believe that they will deepen their understanding of Euclidean geometry as they explore geometric
figures with the definition of distance used in Taxicab geometry. We recommend you try these tasks
with your students and share your experiences with us.

We suggest that you begin the activity by calculating Taxicab and Euclidean distances and construct-
ing Euclidean and Taxicab circles at a given point (see Tasks 1 and 2 in Student Tasks). This will
allow students to examine the different definition of distance and see how it applies in each system.

In order to construct Taxicab circles with GeoGebra, you need to construct two segments (e.g., AB
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and AC) with the length of 3 units at the point A “ p´2, 3q using the tool “Segment with Given
Length” (see Figures 8 and 9).

(a) Segment AB (b) Segments AB and AC

Figure 8

The segments AB and AC will be created on top of each other. Move the point C “ p1, 3q to the
point p´2, 0q so that the segments AB and AC will be perpendicular to each other (see Figure 9).

Figure 9. Perpendicular Segments AB and AC

Use the tool “Regular Polygon” to construct a regular polygon with 4 sides by clicking on the points
C and then B (see Figure 10a), then construct a Euclidean circle with center at A “ p´2, 3q and
radius of 3 units using the tool “Circle with Center and Radius” (see Figure 10b).

What if you want to construct circles with radius of 1, 2, 3, 4, 5, or 6 units dynamically using a slider?
First create a slider (e.g., Slider a with min=1, max=6, and increment= 1) and then construct
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(a) Taxicab Circle (b) Taxicab and Euclidean Circles
Figure 10

the segment with given length of “a” before you construct a 4-sided regular polygon and a circle with
radius of “a” units.

Once students understand Taxicab and Euclidean distances and learn to construct Taxicab and Eu-
clidean circles at a point, they should be asked to construct and explore possible intersections of two
Taxicab or Euclidean circles. For instance, in the Euclidean geometry, two circles may have in com-
mon two points, one point, or no point. Whereas, in the Taxicab geometry, two circles can intersect
to form a line segment in addition to having no point, one point, or two points in common (see Tasks
3, 4, and 5 in Student Tasks section). For the Tasks 3h, 3i, 4a, and 4b (see Student Tasks), you can
construct two circles at A “ p´2, 3q and B “ p2,´1q with two different sliders and explore whether
or not they intersect.

The challenge then becomes how can we explore possible intersections of two circles at two different
points using only one slider? Since the shortest Taxicab distance between the points A “ p´2, 3q
and B “ p2,´1q is 8 units, you need to construct a slider (e.g., Slider a with min=0, max=8, and
increment= 0.1) and then construct two Taxicab circles at A “ p´2, 3q with radius of “a” units
and at B “ p2,´1q with radius of “8 ´ a” units. As students explore these figures with dynamic
GeoGebra woksheet, we suggest you encourage students to create real-life applications of Taxicab
and Euclidean geometry. Additionally, comparing and contrasting the results of these explorations
can be critical to their understanding of both systems and their use of Euclidean geometry. These
explorations can be extended to include not only circles, but ellipses as students progress into upper
level mathematics.
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Student Tasks

Let dT pA,Bq represents the Taxicab distance (“as a taxi would drive”) from A to B and dEpA,Bq
represents the Euclidean distance (“as the crow flies”) from A to B where A “ px1, y1q and B “

px2, y2q. These distance formulas are given by:

dT pA,Bq “ |x2 ´ x1| ` |y2 ´ y1|

dEpA,Bq “
a

px2 ´ x1q
2 ` py2 ´ y1q2

1. Plot each pair of points A and B and then find both dT pA,Bq and dEpA,Bq.
(a) A “ p1, 2q, B “ p5, 4q
(b) A “ p3,´1q, B “ p2, 4q
(c) A “ p´2, 3q, B “ p1,´4q
(d) A “ p´5,´1q, B “ p7, 6q

2. Plot A “ p´2, 3q.
(a) Graph the set of all points P at taxi distance 3 from A; that is, graph tP | dT pP,Aq “ 3u,

the set of all points P such that the taxi distance from P to A is 3.
(b) Graph the set of all points P at Euclidean distance 3 from A (i.e., tP | dEpP,Aq “ 3u).

3. Given A “ p´2, 3q and B “ p2,´1q.
(a) Calculate dT pA,Bq and dEpA,Bq.
(b) Graph tP | dT pP,Aq “ 2 and dT pP,Bq “ 6u
(c) Graph tP | dEpP,Aq “ 2 and dEpP,Bq “ 6u
(d) Graph tP | dT pP,Aq “ 4 and dT pP,Bq “ 4u
(e) Graph tP | dEpP,Aq “ 4 and dEpP,Bq “ 4u
(f) Graph tP | dT pP,Aq “ 5 and dT pP,Bq “ 3u
(g) Graph tP | dEpP,Aq “ 5 and dEpP,Bq “ 3u
(h) Graph tP | dT pP,Aq ` dT pP,Bq “ dT pA,Bqu
(i) Graph tP | dEpP,Aq ` dEpP,Bq “ dEpA,Bqu

4. Given A “ p0, 1q and B “ p0, 5q.
(a) Graph tP | dT pP,Aq ` dT pP,Bq “ dT pA,Bqu
(b) Graph tP | dEpP,Aq ` dEpP,Bq “ dEpA,Bqu

5. Given A “ p0, 1q and B “ p3, 4q.
(a) Graph tP | dT pP,Aq “ 3 and dT pP,Bq “ 3u
(b) Graph tP | dT pP,Aq “ 4 and dT pP,Bq “ 4u
(c) Graph tP | dT pP,Aq “ 6 and dT pP,Bq “ 6u
(d) Graph tP | dT pP,Aq “ dT pP,Bqu

3 DISCUSSION

This article illustrates how dynamic geometry worksheets can be used to model problems and situa-
tions to make visualizing solutions easier and clearer. More specifically, dynamic GeoGebra work-
sheets were designed to explore and reason about mathematical objects of Taxicab and Euclidean
geometry.

As teachers, we should be aware that some of our students have difficulties visualizing mathematical
objects, and that drawing mathematical objects and figures might not help them. On the other hand,
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in a dynamic environment, students can easily manipulate initial conditions by dragging elements of
drawings or using sliders as they explore and analyze various situations. For instance, the Taxicab
tasks were non-routine problems for our students; however, they quickly learned to construct dynamic
worksheets and were able to explore how the Taxicab circles changed and what the overlapping area
looked like. We believe that exploring mathematical objects dynamically is more powerful than sim-
ply thinking about the object drawn on paper or the computer screen, and that work with dynamic
worksheets can improve students’ ability to visualize and support their developing understanding of
geometric concepts and relationships.
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