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Numerical analysis of a planar motion: GeoGebra as a tool of
investigation

Roman Hašek

Abstract: The paper is inspired by the method of the numerical approximation of the planetary
motion that was used by Richard Feynman in the book “The Feynman Lectures on Physics.”
Using Newton’s Second Law and replacing infinitesimally small changes in variables by their
very small changes, he arrived at a respectable approximation of the elliptical motion of a planet
around the sun. To organize all numerically computed data, which include the sequence of co-
ordinates of the consecutive positions of the planet during its motion around the sun, Richard
Feynman used a large table. Then, the plot of the resulting successive positions of the planet was
in accordance with Kepler’s laws. We show that GeoGebra, which enables a user to combine the
spreadsheet with the numerical and graphical tools, is very suitable for grasping such complex
tasks based on repetitive numerical computation and graphical planar representation.
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1. INTRODUCTION

The aim of the paper is to present GeoGebra [2] as
a means to bring the possibility of solving various real-
world problems into classrooms. Its native operation and
the dynamic interconnection between representations of
an object enable students to investigate, by themselves or
with the guidance of their teacher, the mathematical back-
ground of various real-world phenomena and to produce
reliable geometrical and mathematical models. Specifi-
cally, we will show, through an example of the numeri-
cal approximation of the motion of a planet around the
sun that GeoGebra, thanks to its unique combination of
Spreadsheet View, Algebra View and Drawing Pad,
represents a powerful tool that enables us to simply and
naturally perform a numerical iterative computation and
to plot its results.

2. GEOGEBRA FEATURES

The numerical approximation of the planetary motion
together with other problems that deal with the numer-
ical approximation of a motion can be solved in a very
comfortable and simple way in GeoGebra, mainly thanks
to the use of the next two features of the program: the
dynamic interconnection between ’Views’ and the possi-
bility of the iterative computation via the ’Spreadsheet’.
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First, let us look at these features in detail.
By the term ’Views’ we understand the GeoGebra com-

ponents ’Algebra View’, ’Spreadsheet View’ and ’Draw-
ing Pad’ in this paper. The usefulness of the dynamic in-
terconnection of ’Views’ is illustrated in the next simple
example.

Example: A projectile motion. Draw a trajectory of a
projectile that moves under gravity in a vacuum after its
shooting with the angle of elevation α and the initial ve-
locity v0.

See Figure 1 to consider the utility of the dynamic in-
terconnection of ’Views’. It works as follows: We de-
fine functions h(t) and v(t) for coordinates of the instan-
taneous position p(t) = (h(t),v(t)) of the projectile at the
time t in the ’Algebra View’, then use them in the ’Spread-
sheet View’ to generate a list of coordinates of the projec-
tile’s positions corresponding to the arithmetical progres-
sion of times ti with the difference ∆t = 0.1s (see Figure
1, ’Spreadsheet’, column ’A’) and finally plot the list on
the ’Drawing Pad’. Parameters α and v0 of the functions
are controlled by the sliders in such a way that the move-
ment of a slider causes corresponding changes within all
the ’Views’.

The GeoGebra ’Spreadsheet’ enables us to realize the
iterative computations that form the core of numerical ap-
proximation methods. Let us illustrate this technique with
the next geometric example.

Example: Nested triangles. Plot a sequence of triangles
so that the vertices of the subsequent triangle are the mid-
points of the sides of its predecessor.

GeoGebra ’Spreadsheet’ enables us to perform an iter-
ative computation in such a way that the values computed
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Fig 1: Projectile motion - solution in GeoGebra

on one line of a table can be used as input values for com-
putation on the following line and so on; see the pairs of
lines 1-2 and 2-3 in Table 1. Of course, the data from the
table can be plotted on ’Drawing Pad’ if it makes sense.

A B C D
1 (-4,-2) (5,-1) (2,6) Polygon[A1,B1,C1]
2 (A1+B1)/2 (B1+C1)/2 (C1+A1)/2 Polygon[A2,B2,C2]
3 (A2+B2)/2 (B2+C2)/2 (C2+A2)/2 Polygon[A3,B3,C3]
4 ... ... ... ...
5 ... ... ... ...

Table 1: Computation of triangles’ vertices through the
‘Spreadsheet’

In the case of the given example we start with filling in
the first two lines of the table in the way that is shown in
Table 1, then we copy the second line into the next sev-
eral lines, the number of which is given by the number of
nested triangles that we want to draw.

Thanks to the relative addresses of the cells that are used
in formulas for the computation of the midpoints of the
sides of the preceding triangle and in the definition of the
triangle (see Table 1) we will get successive iterations of
the desired triangles, as shown in Figure 2.

Fig 2: Nested triangles - solution in GeoGebra

3. PLANETARY MOTION

The effort to understand the planetary motion was an
important moving force in the process of the formation

and development of modern science. This history is well
known and has been described in many publications, see
for example [1, 3, 7].

Among the ground-breaking events in this story can
be included the formulation of the laws of planetary mo-
tion [4] by Johannes Kepler, which describe the motion of
planets around the sun, and the introduction of the laws
of motion [5] and gravitation [6] by Isaac Newton, which
give the cause of planetary motion. At the present time
these laws are taught at secondary schools and each atten-
tive student is able to express the laws and to explain their
meaning. But what if that student asks a question about
the possibility of deriving the Kepler’s laws from the more
general Newton’s laws. The usual solution to this prob-
lem, especially in the case of the first two Kepler’s laws,
is based on advanced knowledge of calculus and so not
comprehensible to a secondary school student [4].

Now we will show how we can take advantage of Geo-
Gebra to solve the above mentioned problem numerically
in such a way that is understandable and doable for sec-
ondary school students.

3.1. The problem assignment
The presented solution is inspired by the method of the

numerical analysis of the motion of a planet around the
sun that was presented by Richard Feynman in the well
known book "The Feynman Lectures on Physics" (Volume
1, chapter "Newton’s Laws of Dynamics", first published
in 1964) [1]. Here on page 9-6 he assigned the next prob-
lem.
Problem: "Can we analyze the motion of a planet around
the sun? Let us see whether we can arrive at an approx-
imation to an ellipse for the orbit. We shall suppose that
the sun is infinitely heavy, in the sense that we shall not in-
clude its motion. Suppose a planet starts at a certain place
and is moving with a certain velocity; it goes around the
sun in some curve, and we shall try to analyze, by New-
ton’s laws of motion and his law of gravitation, what the
curve is." [1]

The complete solution to this problem is given in [1],
in an intelligible and gripping style, so characteristic of
Richard Feynman. Here we will briefly mention only the
main steps of Feynman’s solution in this text.

The main idea of the numerical solution to the problem
was to compute coordinates of the series of consecutive
positions of a planet during its motion around the sun cor-
responding to times ti, i = 1,2, ..., that differ by the con-
stant difference ∆t, i.e. ti+1 = ti +∆t.

First, he made a convenient choice of physical constants
κ (gravitational constant) and M (mass of the sun) to sim-
plify the computation. Specifically, he chose them so that
to get κM = 1 in the equation of the law of gravitation

F = κ
Mm
r2 instead of κM = 1.372 ·1020 for their real val-

ues κ = 6.673 ·10−11m3kg−1s−2 and M = 1.989 ·1030kg.
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Second, Feynman applied Newton’s second law of mo-
tion and Newton’s law of gravitation to derive formulas
for the computation of the coordinates ax(t), ay(t) of the
acceleration vector~a(t) at time ti:

ax(ti) =− x(ti)
r(ti)3 , ay(ti) =− y(ti)

r(ti)3 . (1)

These formulas allowed him to define relations between
velocities in two consecutive times ti and ti+1 = ti +∆t:

vx(ti+1) = vx(ti)+∆tax(ti)

vy(ti+1) = vy(ti)+∆tay(ti). (2)

After this he could express relations between two suc-
cessive positions X(ti)= [x(ti),y(ti)] and X(ti+1)= [x(ti+1),
y(ti+1)] of a planet during its motion around the sun by the
formulas:

x(ti+1) = x(ti)+∆tvx(ti), y(ti+1) = y(ti)+∆tvy(ti). (3)

Finally, after the determination of the initial position
X(0) = [x(0),y(0)] and velocity ~v(0) = (vx(0),vy(0)) of
the planet at time t1 = 0s, he started the sequential com-
putation of its consecutive positions according to the given
formulas (1) - (3). With one subtlety - to improve the ap-
proximation accuracy he computed each vector~v(t) of in-
stantaneous velocity in the half-time between two posi-
tions X(ti) and X(ti+1). To organize all numerically com-
puted data Feynman used a large table (see [1], page 9-8,
Table 9-2). Then, he plotted all the points with the coordi-
nates [x(ti),y(ti)] to get the picture of the elliptical trajec-
tory during its motion around the sun (see [1], page 9-7,
Fig. 9-6).

3.2. Solution in GeoGebra
The above presented Feynman’s solution, based on the

connection of the numerical computation with a table and
a graph, calls for the use of GeoGebra. The numerically
computed coordinate values, which Feynman stored in the
large table, can be simply generated within the GeoGebra
’Spreadsheet’ and drawn on the plane equipped with the
Cartesian coordinate system with initial parameters con-
trolled by the sliders, exactly in the way that was illus-
trated in section 2. of this paper. We apply the relations
given by the equations (1) - (3) on cells of the two consec-
utive lines of the ’Spreadsheet’, see the pairs of lines 2-3
and 3-4 in Table 2; with one distinction - instead of ∆t we
use a simpler symbol d. We start with filling in the first
three lines in the way that is shown in Table 2, then we
copy the third line into the next several lines, the number
of which is given by the number of the planet’s positions
that we want to compute.

The resulting appearance of the ‘Spreadsheet’ is shown
in Figure 3. Here, in columns B and C, we can find the de-
sired coordinates of the individual positions of the planet

Table 2: Planetary motion spreadsheet
A B C D

1 t x y r
2 0 x0 y0 sqrt(B22+C22)

3 A2+d B2+dG2 C2+dH2 sqrt(B32+C32)

4 A3+d B3+dG3 C3+dH3 sqrt(B42+C42)

5 ... ... ... ...
6 ... ... ... ...

E F G H
1 ax ay vx vy
2 −B2/D23 −C2/D23 vx0 +d/2E2 vy0 +d/2F2

3 −B3/D33 −C3/D33 G2+dE3 H2+dF3

4 −B4/D43 −C4/D43 G3+dE4 H3+dF4

5 ... ... ... ...
6 ... ... ... ...

during its motion around the sun. To plot them, we simply
select the content of those columns and invoke the Create
List of Points command. To get the same result as in Fig-
ure 3 we must suppress the ’Show Label’ options to each
point and draw the sun, i.e. a coloured circle, at the origin
of the Cartesian coordinate system.

Fig 3: Planetary motion - solution in GeoGebra

3.3. Inquiry into the GeoGebra solution
The resulting trajectory of the planet, corresponding to

the initial conditions: X(0) = [0.5,0], ~v(0) = (0,1.77),
which is indicated by the successive positions of the planet
in Figure 3, appears consistent with Kepler’s laws.

GeoGebra tools provide us with the possibility of veri-
fying this fact as well as performing other activities within
the resulting approximation. First, we can try to verify the
first two Kepler’s laws with the help of the GeoGebra tools
Conic through Five Points and Polygon (the option ’Show
Label - Value’ should be activated). The final results of
both verifications are favourable, as you can see in Figure
4. Second, we can play with the values of the initial pa-
rameters X(0) and ~v(0), which are controlled by sliders,
and arrive at trajectories of different shapes, as shown in
Figure 5.
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Fig 4: Inquiry into the solution by the GeoGebra tools:
X(0) = [0.7,0],~v(0) = (0.68,1.85)

Fig 5: Inquiry into the solution by the GeoGebra tools:
Kepler’s laws of orbits and areas

4. CONCLUSIONS

The paper has introduced one particular real-world prob-
lem as a representative of the kind of problems dealing
with the numerical approximation of a motion, the solu-
tions of which, using the software GeoGebra, can be re-

alized with students in a motivational and beneficial way.
The process of solving such problems in the classroom in-
troduces mathematics as a living and useful science, the
application of which crosses boundaries between it and,
what at first glance seem distinct disciplines, such as as-
tronomy, biology, physics, geometry, computer science
etc. It gives students a chance to experience the useful-
ness of the mathematical knowledge they have learnt at
school. I would be delighted to inspire the reader of my
paper to search for such problems and to solve them with
his/her students.
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