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Joseph Manthey, Kim Ward, Ekaterina Lioutikova, and Hong Zhou

References 16

2 Visualizing Functions of Complex Numbers Using Geogebra 17
Albert Navetta

References 25

3 A Geometric Interpretation of Complex Zeros of Quadratic Functions 26
Joseph Pastore and Alan Sultan

References 34

4 Using the Tail of a Sequence to Explore its Limit 35
James Quinlan

References 38

5 “Messing Around” in GeoGebra: Online Inquiry Through Apps and Games 40
Forest Fisher

References 47

6 Surviving on Mars with GeoGebra 48

ii



CONTENTS iii

Lindsey States and Jenna Odom

References 51

PART II GUEST PRESENTATION (NOT REFEREED)

7 Digging Deeper Using GeoGebra: An exploration of quadratics and more (pending author
approval) 57
Doug Kuhlmann

References 65

PART III SHORT PRESENTATIONS AND POSTERS

8 Short Presentation Abstracts 67

8.1 Volume of Solids with Known Cross Sections - Rasha Tarek, Staples High School, CT 67
8.2 Dynamic Illustrations and Validations of Geometric Theorems - Tim Brzezinski, Berlin High

School, CT 67
8.3 Real Problems with Real Pictures - Ali Heery and Rob Belevich, Southern Connecticut State

University, CT 67
8.4 Geometric Constructions with Automatic Feedback - Jason Wofsey, Professional Childrenâ^s

School, NY 67
8.5 Pythagoras in Converse - Hunter Smith, Engineering & Science University Magnet School, CT 68
8.6 Graphing Surfaces with Polygon Cross Sections in GeoGebra - Doug Hoffmann, Northwestern

Community College, CT 68
8.7 A Dynamic Definition of tan(t) - Doug Kuhlman, former teacher at Andover Philips Academy, MA 68
8.8 Constructing Meaning in Geometry with GeoGebra - Sandra Ollerhead, Mansfield High School, MA 68

9 Interactive Poster Abstracts 69

9.1 Triangle Similarity Shortcuts - Rasha Tarek, Staples High School, CT 69
9.2 Slope Field Generator - Rasha Tarek, Staples High School, CT 69
9.3 Graphing Polynomials Using Zeros and their Multiplicities - Janet Zupkus, Naugatuck Valley

Community College, CT 69
9.4 Characteristics of Quadratic Graphs - Rayigam Thevaraja Mathiyalagan, Tamil Vidyalayam, Sri

Lanka 69
9.5 Pythagorean Theorem Game - Matthew Krebs, Boston Public Schools, MA 69
9.6 Distance Game - Matthew Krebs, Boston Public Schools, MA 70
9.7 Proportions Game - Matthew Krebs, Boston Public Schools, MA 70
9.8 Jeopardy - Matthew Krebs, Boston Public Schools, MA 70
9.9 Interior Angles of Polygons - Ali Heery, Bridgeport Public Shools, CT 70
9.10 The Ambiguous Case - Ella Sayin, Southern Connecticut State University, CT 70
9.11 Non-coplanar “Quad” Midpoints - Tim Brzezinski, Berlin High School, CT 70
9.12 9-point Circle Action (Part 1) - Tim Brzezinski, Berlin High School, CT 70
9.13 Hexagonal Napolean Theorem? - Tim Brzezinski, Berlin High School, CT 70
9.14 Numerical Integration - Albert Navetta, University of New Haven, CT 71
9.15 Exploring Rotations - Sandra Ollerhead, Mansfield High School, MA 71
9.16 Exploring reflections - Sandra Ollerhead, Mansfield High School, MA 71



REVIEW COMMITTEE

Dr. Therese Bennett,
Dr. Leon Brin,
Dr. Braxton Carrigan,
Dr. Aaron Clark,
Dr. Alain D’Amour,
Dr. Martin Hartog,
Dr. Marie Nabbout,
Dr. Valeriu Pinciu,
of the Mathematics Department, Southern Connecticut State University, New Haven, CT

iv



ACKNOWLEDGMENTS

The GeoGebra Institute of Southern Connecticut would like to extend its gratitude to the many people that make our
conference a success. In particular, we recognize the annual support of the Office of the Dean of Arts and Sciences and
the Department of Mathematics. We also extend hearty thanks to Anna Scanlon for her clerical assistance throughout
the process, to Braxton Carrigan and Tim Brzezinski for conducting the pre-conference workship, to James Quinlan
for his help typesetting these proceedings, and to Todd Edwards for allotting some cyberspace for hosting the final
copy.

v



PART I

REFEREED PRESENTATIONS



GEOGEBRA TOOLS FOR THE POINCARÉ DISK

Joseph Manthey, Kim Ward, Ekaterina Lioutikova, and Hong Zhou

University of Saint Joseph, West Hartford, CT 06117 & Eastern Connecticut State University, Willimantic, CT 06226

Abstract: The Poincaré disk model played an important role in the acceptance and development of hyperbolic geometry.
Although exceptionally useful, the pedagogical value of the model can be further enhanced via experimentation in a
dynamic geometry environment. The focus of this article is on the creation of custom tools in GeoGebra for constructing
hyperbolic lines and circles in the Poincaré disk. In an effort to make this material accessible to a wider audience, the
necessary mathematics is also included.

Keywords: Poincaré disk, GeoGebra: custom tools

Introduction

Euclid’s Elements was a comprehensive summary of the mathematics known to the ancient Greeks and remained the
definitive textbook on geometry for more than 20 centuries. His postulates laid bare many of the assumptions made by
the Greek geometers and the fifth postulate, called the parallel postulate, has been of particular interest. All attempts
to prove that the fifth postulate was dependent on the first four ended in failure and most of these efforts contributed
little to the evolution of geometry. Carl Friedrich Gauss may have been the first mathematician to recognize the
independence of the fifth postulate, but he never published his results [7]. Models of hyperbolic geometry came 30
years later and were used to establish the relative consistency of Euclidean and hyperbolic geometry and to prove the
independence of the fifth postulate. The Poincaré disk model was originally developed by the Italian mathematician
Eugenio Beltrami in 1868 and was reintroduced and popularized by French mathematician Henri Poincaré in 1881.
The model is conformal and provides a link to several other branches of mathematics including complex function
theory and differential equations. The Poincaré disk model entered the popular culture via the work of the Dutch
graphics artist M.C. Escher.

The Poincaré disk and other models made hyperbolic geometry easier to visualize and played a role in its gaining
acceptance. Although the models are helpful, students can benefit from the use of dynamic geometry software which
provides an environment suitable for experimentation. At present there are several software packages available for
this purpose including Cinderella [3] and NonEuclid [2] which both provide tools for working with the Poincaré disk
model. These tools are useful, but they are not as well known as GeoGebra [9] and it is natural to wonder whether
or not the same tasks could be performed in GeoGebra. Currently, GeoGebra does not provide any built in tools but
several custom tools are available on GeoGebraTube. Some of the best include those developed by Maline Christersson
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Figure 1.1: Lines in the Poincaré disk model are either open diameters or open circular arcs orthogonal
to γ. Each line is shown passing through points A and B and with their ideal endpoints P and Q.

[4] and Stehpan Szydlik [10]. However, both of these tools have some defects. For example, their hyperbolic line
tools do not work properly in all cases. The emphasis in this paper is on learning how to create robust custom tools in
GeoGebra for constructing hyperbolic lines and circles in the Poincaré disk model. In an effort to make this material
accessible to a wider audience, the mathematics needed to construct the tools will also be provided.

Poincaré disk model

The Poincaré disk model begins with a circle γ with center O in the Euclidean plane. Points in this model are points
in the interior of γ. Points on γ are called ideal points. They are not included in the model and are considered to
be infinitely far away from points in the interior. There are two types of lines in the Poincaré disk model. The first
type are the open diameters of γ and the second type are the open circular arcs orthogonal to γ. Taken together, the
two types of lines are called p-lines and they are geodesics. It is worth noting that a diameter may be regarded as the
limiting case of a circle whose radius is approaching infinity.
Circles orthogonal to γ can be constructed in several different ways. One method is to use the following result from
Euclidean geometry which makes use of tangents [11].

Definition 1.1 Two circles are orthogonal if their tangent lines are perpendicular at the point of intersection.

Theorem 1.1 Let c be a circle with center O and c′ be a circle with center O′ and suppose the circles intersect at
points A and B. Then the circles are orthogonal if and only if the tangent lines to c′ at A and B intersect at O and the
tangent lines to c at A and B intersect at O′.
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Another method involves using inversive geometry. In this approach, circles orthogonal to γ are constructed using
inverse points [5, 6, 7].

Definition 1.2 The inverse of a point P with respect to a circle c with center at point O and radius r is the unique
point P ′ on the ray OP such that OP ·OP ′ = r2.

Theorem 1.2 Let c be a circle with center O and radius r and P be a point that is not on c and that is not the center
of c. Define P ′ as the inverse of P with respect to c. Suppose a circle c′ passes through point P . Then the circles c
and c′ are orthogonal if and only if c′ passes through P ′.

Angles in the Poincaré disk model are defined as the Euclidean angle between tangents. The fact that angles are
preserved is considered to be an advantage of the disk model over other models of hyperbolic geometry.
Distance is more complicated in the Poincaré disk model and is significantly distorted. The ratio of distances is also
distorted. However, the cross ratio defined as a ratio of ratios of distances is preserved [7].
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Figure 1.2: The angle between two hyperbolic lines is defined as the Euclidean angle between the
tangents at their point of intersection. The angle ACB is defined as the Euclidean angle A′CB′.

Definition 1.3 Suppose that A and B are any two points in the Poincaré disk and let P and Q be the ideal endpoints
of the line that connects them. Then the cross ratio is defined as

(AB,PQ) =
AP

AQ
÷ BP

BQ

where the AP , AQ, BP and BQ are Euclidean lengths.

Theorem 1.3 Let c be a circle with center O. If A , B, P , Q are four distinct points different from O and A′, B′, P ′,
Q′ are there inverses with respect to c, then their cross ratio is preserved, (A′B′, P ′Q′) = (AB,PQ).

Definition 1.4 The distance between points A and B in the Poincaré disk model is defined in terms of the cross ratio
as d(A,B) = | ln(AB,PQ)|.

A hyperbolic circle with center A and radius r is defined as the set of all points X in the Poincaré disk such that
d(A,X) = r. The relationship between hyperbolic and Euclidean circles in the Poincaré disk model is captured in the
following theorem [1, 7].

Theorem 1.4 Hyperbolic circles in the Poincaré disk model are also Euclidean circles but their centers are not the
same unless the hyperbolic circle is centered at O.

An isometry is a distance preserving transformation. There are four isometries in the hyperbolic plane including
hyperbolic reflections, hyperbolic translations, hyperbolic rotations and the parabolic isometry which has no Euclidean
counterpart. In this paper, we focus on the hyperbolic reflections [8] since they are required for the construction of the
hyperbolic circle.

Definition 1.5 A hyperbolic reflection is either a Euclidean reflection across a diameter or an inversion with respect
to a circular arc orthogonal to γ.

Theorem 1.5 Hyperbolic reflections are isometries. If points A′, B′ are reflections of points A, B about a hyperbolic
line, then d(A′, B′) = d(A,B).

Hyperbolic line tool

Although in theory the defining circle γ can be any circle, for the purpose of creating custom tools in GeoGebra for
constructing hyperbolic lines and circles, we will take γ to be the unit circle. When constructing a hyperbolic line
passing through two points, we must consider several possibilities depending on whether or not the points lie on a
diameter of γ and whether the points are located in the interior or on the boundary of γ. These possibilities can be
divided into three cases; diameters, arcs and ideal arcs.
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Figure 1.3: A hyperbolic circle in the Poincaré disk is also a Euclidean circle. The hyperbolic center
is offset towards the boundary of the disk since distances near the boundary are larger.

Figure 1.4: Hyperbolic reflections. (a) If the hyperbolic line is a diameter of γ, the hyperbolic
reflection is simply the Euclidean reflection about the diameter. (b) If the hyperbolic line is a circular
arc orthogonal to γ, then the hyperbolic reflection is an inversion about the hyperbolic line.
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Figure 1.5: Use an arc of circle c1 to approximate the diameter passing through points A and B.
The circle c1 is tangent to the diameter at O and its center O1 lies on the perpendicular bisector of
the diameter. Define I1 as one of the intersections of the diameter and the defining circle γ. Locate
O1 by rotating I1 about O counterclockwise by 90 degrees and then dilating by a factor equal to the
radius of c1. Find the intersections P1 and Q1 of c1 and γ and use them as the endpoints of the
circular arc a1. Note that the circle c1 is shown with a radius of 2 in order to make the details of the
construction easier to see. When the radius is set equal to 1000, the arc a1 appears as a straight line.

Diameters

If A and B are collinear with O, then the hyperbolic line passing through A and B is a diameter of γ. Although
diameters are simple in theory, there are some complications when implementing this case in GeoGebra since in the
end all three cases will be combined into a single custom tool. In an ideal world, we could use the Segment [<Point>,
<Point >] command to construct the diameter. Unfortunately, the If [ <Condition >, <Then >, <Else >] command
needed to combine the cases requires that the <Then >and <Else >objects be of the same type. Since segments and
arcs do not meet this criterion, the diameter will be approximated using the small arc of a large circle as shown in
Figure 1.5.
Begin the construction by creating γ using the Circle[ <Point >, <Radius Number >] and two points inside γ using
the PointIn[ <Region >] command

// Poincarè disk --------------
// Construct the unit circle γ
// Create point A inside γ
// Create point B inside γ
// ----------------------------

γ: Circle[(0,0), 1]
A: PointIn[Circle[(0,0), 1]]
B: PointIn[Circle[(0, 0), 1]]

Then construct the approximate diameter. Note that the Intersect [ ] command has several forms and in the form used
below, the third argument is the index of the intersection.
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Figure 1.6: Construct the hyperbolic line for the case in which points A and B are not collinear with
O and at least one of the points is in the interior of γ. Begin by determining the inverses of A and B
with respect to γ. If A is in the interior of γ, then by Theorem 2 the circle c2 passing through points
A, A′ and B is orthogonal to γ. If A is on γ then A and A′ coincide (points on the circle of inversion
are invariant) and c2 can be constructed using points A, B and B′. Determine the intersections P2
and Q2 of c2 and γ and use them as the endpoints of circular arc a2. Locate an additional point M2
on arc a2. IfA is on γ, chooseM2 = B , otherwise chooseM2 = A. Finally construct arc a2 using
points P2, M2 and Q2.

// Diameters-----------------------------------
// Approximate the diameter using the small arc
// of a large circle
// Locate an endpoint I1 of the diameter
// Use I1 to locate the center O1 of circle c1
// Construct circle c1
// Locate endpoint P1 of arc a1
// Locate endpoint Q1 of arc a1
// Construct circular arc a1
//---------------------------------------------

I1: Intersect[Circle[(0,0), 1], Line[A, B],1]
O1: 1000 Rotate[I1, 90◦]
c1: Circle[O1, 1000]
P1: Intersect[Circle[(0,0), 1], c1, 1]
Q1: Intersect[Circle[(0, 0), 1], c1, 2]
a1: CircumcircularArc[P1, (0, 0), Q1]

If you study the GeoGebra commands in this section, you will notice that γ is purely decorative and is included only
to make the unit circle visible during the construction process. If the unit circle is required on the right hand side of
any command, it is created using Circle [(0,0), 1] command. If the decorative γ were used instead, then the final tool
would require the user to input two points and the circle. In other words, a little extra effort at this stage will result in
a tool that requires two inputs instead of three.

Arcs

If A and B are not collinear with O, then the hyperbolic line passing through A and B is the open arc of a circle
orthogonal to γ. If in addition, at least one of the points lies in the interior of γ, then the hyperbolic line can be
constructed using inversive geometry as described in Figure 1.6.
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Prepare for this construction by hiding all of the objects from the previous construction except for points A and B and
the defining circle γ. Then construct the circular arc using the GeoGebra code provided below. Note the use of the
Reflect[ <Object >, <Circle >] command to determine the inverses of A and B with respect to γ and the Length[
<Object >] command to determine whether or not A is on γ. The If[ <Condition >, <Then >, <Else >] command
is used to construct the circle passing through points A and B and orthogonal to γ. If A is on γ, then the circle is
constructed using A, B and B′, otherwise it is constructed using points A , A′ and B.

// Arcs----------------------------------------------
// Construct a circular arc using Theorem 2
// Determine the inverse of point A with respect to γ
// Determine the inverse of point B with respect to γ
// Construct circle c2 passing through A and B and
// orthogonal to γ (if A is on γ, use points A, B, B′,
// otherwise use points A, B, A′)
// Locate endpoint P2 of arc a2
// Locate endpoint Q2 of arc a2
// Locate an additional point M2 on arc a2
// (if A is on γ, set M2 = B, otherwise set M2 = A)
// Construct circular arc a2 using points P2, M2 and Q2
//-----------------------------------------------------

A’: Reflect[A, Circle[(0, 0), 1]]
B’: Reflect[B, Circle[(0, 0), 1]]
c2: If[Length[A] == 1, Circle[A, B, B’], Circle[A, B, A’]]
P2: Intersect[c2, Circle[(0,0), 1], 1]
Q2: Intersect[c2, Circle[(0, 0), 1], 2]
M2: If[Length[A] == 1, B, A]
a2: CircumcircularArc[P2, M2, Q2]

Ideal arcs

Consider the situation for which A and B are not collinear with O and both points lie on γ. In this case, the previous
construction fails since both points are invariant under inversion about γ and inversion cannot be used to obtain the
third point needed to construct the circle. The solution is to use a result from Euclidean geometry as illustrated in
Figure 1.7.
Prepare for this construction by hiding all of the objects from the previous constructions except for points A and B
and the defining circle γ. Then construct arc a3 using the GeoGebra code provided below. Note that the most obvious
method for constructing the tangents would be to use the Tangent[ <Point >, <Conic >] command. However if this
command is used, the final hyperbolic line tool will fail when imported into another GeoGebra file (most likely due
to the fact that the Tangent command was designed to construct multiple tangents from a point to a conic). To work
around this problem, unique tangents to γ at A and B are constructed using the fact that the tangent to a circle is
perpendicular to the radius of the circle.

// Ideal arcs-----------------------------------------
// Construct ideal arcs using Theorem 1
// Construct tangent t3a to γ at point A
// Construct tangent t3b to γ at point B
// Locate the center O3 of circle c3
// (intersection of the tangents)
// Construct circle c3 passing through A and B
// and orthogonal to γ
// Locate an additional point M3 on arc a3 by finding
// the intersection of circle c3 with the ray from O3
// to the midpoint of segment AB
// Construct circular arc a3 using points A, M3, B
// ---------------------------------------------------
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Figure 1.7: Construct the hyperbolic line passing through points A and B for the case in which A
and B are not collinear with O and both points lie on γ. Begin by constructing tangents t3a and t3b
to γ at points A and B respectively. By Theorem 1, the tangents intersect at the center O3 of a circle
c3 which passes through A and B and is orthogonal to γ. Construct c3 using O3 as the center and
either point A or B. Use A and B as the endpoints of arc a3. Determine an additional point M3 on
arc a3 by constructing a ray from O3 to the midpoint of segment AB and locating the intersection of
this ray with c3. Then use points A, M3, B to construct arc a3.

t3a: PerpendicularLine[A, Line[(0, 0), A]]
t3b: PerpendicularLine[B, Line[(0, 0), B]]
O3: Intersect[t3a, t3b]
c3: Circle[O3, A]
M3: Intersect[c3, Ray[O3, Midpoint[A, B]]]
a3: CircumcircularArc[A, M3, B]

Create the hyperbolic line tool

Use the Boolean variables isDiameter and isIdeal to distinguish between the three cases. The isDiameter variable
tests whether or not points A and B are collinear with O and isIdeal tests whether or not both A and B are on γ.
Then use nested If[<Condition>,<Then>,<Else>] commands to combine the three cases. Note that in traditional
programming languages, only the objects which are needed would be constructed. In this construction, however, the
objects used in all three cases are always created and the nested If statement is used to display the valid object.

// Combine cases-----------------------------------------
// Boolean isDiameter is true if A, B and O are collinear,
// otherwise false
// Boolean isIdeal is true if A and B are on γ,
// otherwise false
// Combine diameters, arcs and ideal arcs into a single
// hyperbolic line command
//-------------------------------------------------------

isDiameter: AreCollinear[(0,0), A, B]
isIdeal: Length[A] == 1 & Length[B] == 1
pline: If[isDiameter, a1, If[isIdeal, a3, a2]]
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We are finally ready to create a custom tool for creating hyperbolic lines in the Poincaré model. Be sure to hide all of
the objects except A, B and pline. For pline, it is best to turn off the label. Then go to the main menu in GeoGebra
and select Tools/Create New Tool. In the Output Objects tab, use the drop-down menu to select pline.

Use the Next button to move to the Input Objects tab and use the drop-down menu to select points A and B.

Use the Next button to move to the Name & Icon tab and provide a name for the tool and a command name. Provide a
tool tip such as “Select two points” to provide users with information on how to use the tool.
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Although it is not necessary, it is possible to create an icon. If you decide to do this, consider using a separate GeoGebra
Worksheet to create a suitable image and then use screen capturing software such as Jing (free) or SnagIt (commercial)
to create an image file. Then press the Icon button and navigate to the image file and press Open. Press the Finish
button and you now have a tool for creating lines in the disk model.

This custom tool can be used both as a tool and as the command Pline[ <Point >, <Point >] in the Input bar. In
addition, the custom tool can be saved to your computer as GGT file and then imported into other GeoGebra files.
To do this, select Tools/Manage Tools, then select Save As and press Save. Then open a new GeoGebra file and use
File/Open to import the GGT file. Be sure to do this prior to beginning the hyperbolic circle construction, since this
approach hides all of the details of construction of the hyperbolic line tool and allows you to focus on constructing the
hyperbolic circle. This works since all of the details of the construction are contained in the GGT file and they are not
displayed in the Algebra window.

Hyperbolic circle tool

Hyperbolic circles in the Poincaré disk model are also Euclidean circles but in general the hyperbolic center is not the
same as the Euclidean center. The key to constructing a hyperbolic circle with center at points A and passing through
point B is to locate its Euclidean center C and then construct a Euclidean circle with center C passing through B. The
construction of the hyperbolic circle is broken into three cases depending on whether or not A = O and whether or
not the A and B are collinear with O.

Hyperbolic center at the origin

IfA = O, then by Theorem 4 the Euclidean center of the circle is also atO and the hyperbolic circle can be constructed
using a Euclidean circle centered at O and passing through B . Begin the construction by creating γ and two points
inside γ.
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Figure 1.8: Construction of the hyperbolic circle c2 with hyperbolic center A 6= O and passing
through B for the case in which points A, B and O are not collinear. All hyperbolic lines passing
through the center A are orthogonal to the circle. Since line OA is one such line, it is orthogonal to
c2 and the center of c2 must lie on this line (if a line cuts a circle orthogonally, the line must be a
diameter of the circle). In addition, c2 is orthogonal to the hyperbolic line pAB (circular arc) passing
through pointsA andB . By Theorem 1, the Euclidean centerO2 of c2 must lie on the tangent tB to
the hyperbolic line pAB at pointB . Thus the Euclidean centerO2 of c2 is located at the intersection
of lineOA and tangent tB. The hyperbolic circle c2 can then be constructed using a Euclidean circle
centered at O2 and passing through B.

// Poincarè disk --------------
// Construct the unit circle γ
// Create point A inside γ
// Create point B inside γ
// ----------------------------

γ: Circle[(0, 0), 1]
A: PointIn[Circle[(0, 0), 1]]
B: PointIn[Circle[(0, 0), 1]]

Then construct the circle.

// Center at the origin -------------------------
// Construct hyperbolic circle c1 using Theorem 4
// ----------------------------------------------

c1: Circle[A, B]

Points not on a diameter

If A 6= O and points A and B are not collinear with O, then the hyperbolic circle centered at A and passing through
B can be constructed using the fact that every hyperbolic line passing through A must be orthogonal to the circle as
explained in Figure 1.8.

Begin by hiding c1 from the previous case and then implement the construction using the following GeoGebra code.
Although the most obvious way to construct the tangent is to use the Tangent[ <Point >, <Conic >] command, we
forego this approach since the command fails for some locations of B on γ (returns undefined, most likely since the
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Figure 1.9: Construction of the hyperbolic circle c3 with hyperbolic center A and passing through
B for the case in which A 6= O and A and B are collinear with O. Begin by determining the inverse
of A with respect to γ and then construct circle ca passing through A and A′ and centered at the
midpoint of segment AA′. By Theorem 2, ca is orthogonal to γ and is therefore a hyperbolic line in
the Poincaré disk. Define A′′ and B′′ as the inverses of A and B with respect to ca (be careful since
in all previous constructions, the inverses have been with respect to γ ). To finish the construction,
we use the distance metric. By Theorem 5, d(A′′, B′′) = d(A,B). Furthermore since A is invariant
after inversion with respect to ca , we obtain d(A,B′′) = d(A,B). Hence, the hyperbolic circle c3
can be constructed using a Euclidean circle centered at the midpoint of segment BB′′ and passing
through the point B.

numerical algorithms occasionally fail to find the tangent at the endpoint of an arc). The approach taken here is to use
the fact that the tangent to a circle is perpendicular to its radius.

// Points not on a diameter ----------------------------
// Construct hyperbolic circle c2 using Theorem 1
// Construct line OA
// Construct hyperbolic line pAB through A and B
// Construct tangent tB to the hyperbolic line pAB at B
// Locate the center O2 of hyperbolic circle c2
// (intersection of line OA and tangent tB)
// Construct the hyperbolic circle c2
// -----------------------------------------------------

OA: Line[(0,0), A]
pAB: Pline[A, B]
tB: PerpendicularLine[B, Line[Center[pAB], B]]
O2: Intersect[OA, tB]
c2: Circle[O2, B]

Points on a diameter

If A 6= O and points A, B and O are collinear, then the previous construction fails since the intersection of OA and
tB is no longer defined. In this case the circle can be constructed using the distance metric as explained in Figure 1.9.
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Begin by hiding all of the objects from the previous construction except points A and B and the defining circle γ and
then move the A and B onto a diameter. Use the following GeoGebra code to implement the construction.

// Points on a diameter -------------------------------
// Construct hyperbolic circle c using Theorems 2 and 5
// Determine the inverse of point A with respect to γ
// Construct circle ca through points A and A′ centered
// at midpoint of segment AA′

// Determine the inverse of point B with respect to ca
// Construct the hyperbolic circle c3
// ----------------------------------------------------

A’: Reflect[A, Circle[(0, 0), 1]]
ca: Circle[Midpoint[A, A’], A]
B’’: Reflect[B, ca]
c3: Circle[Midpoint[B, B’’], B]

Create the hyperbolic circle tool

Combine the three cases by defining the Boolean values Origin and Collinear and using nested If[ <Condition >,
<Then >, <Else >] statements.

// Combine cases----------------------------------------
// Boolean isOrigin is true if A = O and false otherwise
// Boolean isCollinear is true if A, B and O are
// collinear and false otherwise
// Combine cases into a single hyperbolic circle command
//------------------------------------------------------

isOrigin: A == (0,0)
isCollinear = AreCollinear[(0, 0), A, B]
pcircle: If[isOrigin, c1, If[isCollinear, c3, c2]]

Hide all of the objects except A, B and pcircle and turn off the label for pcircle. Then use Tools/Create New Tool to
create a custom tool, Pcircle, which accepts points A and B as inputs and outputs pcircle. Provide a helpful tooltip
such as “Select center, then point” and create an icon for the tool if you wish.

Conclusion

The primary focus of this paper has been on the construction of custom tools in GeoGebra for creating hyperbolic
lines and hyperbolic circles in the Poincaré disk model. The hyperbolic line tool is robust and works well in all cases
including when points A and B are in the interior of γ, on the boundary of γ and when they are on the same diameter.
The hyperbolic circle is similarly robust and works for the full range of positions of the center point A and point B
within and on γ. Tools for creating hyperbolic segments and rays can be constructed in a manner similar to that of
hyperbolic lines with some modifications. If the reader wishes to create a more complete suite of tools for working
with the Poincaré disk, then it is worth noting that the construction of hyperbolic perpendicular bisectors, hyperbolic
midpoints, hyperbolic perpendicular lines and hyperbolic angle bisectors mimic their corresponding Euclidean compass
and straightedge constructions.
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VISUALIZING FUNCTIONS OF COMPLEX NUMBERS
USING GEOGEBRA

Albert Navetta

University of New Haven, West Haven, CT 06516

Abstract: This paper explores the use of GeoGebra to enhance understanding of complex numbers and functions
of complex variables for students in a course, such as College Algebra or Pre-calculus, where complex numbers
are introduced as potential solutions to polynomial equations, or students starting out in an undergraduate Complex
Variables course. The paper introduces methods to create interactive worksheets for students seeing complex numbers
and functions for the first time and for those who have some experience with them, but struggle to visualize their meaning.
Acknowledging limitations of GeoGebra concerning complex functions, we create new learning opportunities as we
develop workarounds.

Keywords: complex numbers, GeoGebra

Introduction

Overview

At first glance, GeoGebra may not seem to be a very powerful tool for functions involving complex numbers. Indeed,
if the goal is simply to perform very complicated calculations, there are many better tools available. Many of them,
such as Sage, are also free. But for teaching the basics to College Algebra students or beginning students in a Complex
Variables course, a strong case can be made that GeoGebra is the best tool for students to interact with visualizations
involving complex numbers. At the time of this writing, GeoGebra lacks the ability to directly process functions
involving complex variables, although it handles operations on complex numbers just fine. We will exploit those
capabilities, and GeoGebra’s unique ability to easily show two graphics windows interacting with each other. In some
cases, GeoGebra’s limitations can be used to an advantage, requiring students to break down functions into real-valued
parts.

Entering and Displaying Complex Numbers

A complex number may be entered very easily in GeoGebra. Simply use the Complex Number tool or type

z1 = 2 + 2i

Proceedings of the 4th Annual Southern Connecticut GeoGebra Conference.
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Figure 2.1: Graphics and Algebra view with z1 = 2 + 2i.

in the input bar and the complex number z1 will be saved and displayed as a point.1 Except for the label, the complex
number 2+ 2i is indistinguishable from the ordered pair (2, 2) in the graphics window. The user can change the point
to and from being treated algebraically as a complex number using the Algebra tab of the properties dialog. Referring
to Figure 2.1, selecting Complex Number results in z1 being treated algebraically, and labeled (if Value is selected in
the Show Label dialog) as a complex number. Only the Complex Number selection results in the point being treated
algebraically as a complex number. In the Algebra view, points are either listed under the heading Point or Complex
Number; this is based on how the point was initially entered and will not be affected by changing the setting in the
Algebra tab.2 Note that z cannot be used as the name because z is reserved as a variable in GeoGebra, but Z can be
used. An existing point that had not been entered as a complex number can be changed to a complex number using the
same tab. A complex number may be entered in polar form (reiθ), but will still be displayed as a+ bi. For example,
the same point z1 may have been entered as

z1 = 2 * sqrt(2) * e∧ (i * pi/4).

GeoGebra will accept the entry, but will automatically convert it and display z1 = 2 + 2i. 3 With a little extra work
we can label the points with polar

(
reiθ

)
form or any other form.

Complex Numbers as Vectors

To display a complex number as a vector, the user must enter a vector in GeoGebra, then use the Algebra tab in the
object properties as in figure 2.1. The result will be a complex number displayed as a vector. For example, to have
z2 = 2 + i displayed as a vector, enter

z2 = Vector[2 + i].

This will result in the vector z2 =

(
2

1

)
, but the Algebra setting defaults to Cartesian Coordinates, so the setting must

be changed in the Properties dialog (see Figure 2.1). Figure 2.2 shows z1 and z2 as a point and a vector respectively.

Functions

Stored functions in Geogebra are always functions of real numbers. For example, an entry of

1There is nothing special about the choice of z1. entering a = 2 + 2i will result in the same complex number stored as a.
2Previous versions of Geogebra would change the heading of the point based on the Algebra setting.
3The Polar Coordinates selection in the pull-down menu in figure 2.1 will convert z1 to a point with polar coordinates (r, θ). GeoGebra will not
process the point algebraically as a complex number.



19

Figure 2.2: Complex numbers z1 as a point, and z2 as a vector.

f(z) = z∧2,

might be expected to generate a function whose inputs may be complex numbers. However, if f(z) is entered as above,
followed by

w1 = f(z1),

where z1 = 2 + 2i, GeoGebra will process only the real part of z1, so the result is w1 = 4. Entering

f(2+2i)

results in an alert saying the argument 2+2i is illegal. The correct result can only be obtained by entering the function
directly as a simple operation, not using function notation. For example, entering

w1 = (z1)∧2,

yields the result w1 = 0 + 8i, as expected. The value of z1 can then be changed manually or by dragging z1 around
the graphics view. As z1 updates, w1 will also update by the definition w1 = (z1)2.

Operations With Complex Numbers

Addition and Subtraction

Clearly, the best way to visualize addition and subtraction is with vectors, but there are some obstacles to directly
displaying vector addition with the desired parallelograms. The trick is to perform all algebra with points, then use the
points to define vectors. For example, suppose we want to display the addition of 2 complex numbers z1 and z2 as
z3 = z1 + z2. We would enter points P1 and P2 as complex numbers, then enter

P3 = P1 + P2.

We then define our displayed complex numbers as vectors tied to each point by entering

z1 = Vector[P1]
z2 = Vector[P2]
z3 = Vector[P3].

Figure 2.3a shows the result. The points defining the vectors are left labeled in Figure 2.3a for clarity, but the labels
should be hidden and the points reduced to minimum size in the final version of the display. The points themselves
may be hidden, but then they cannot be moved and the worksheet loses its interactive capability. Figure 2.3b shows
z3 = z1 + z2 again, but z1 and z2 are duplicated from the tip of z2 and z1 respectively, forming a parallelogram,
highlighting the commutative property. The duplicate vectors must also be defined by their corresponding points using
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(a) Vectors z1, z2 and z3 = z1 + z2. Points
defining vectors are shown.

(b) Same operation as Figure 2.3a, but point labels
are off and point size is minimized.

(c) Subtraction of vectors, Points defining vectors
labeled for clarity.

(d) Subtraction of z2 from z1.

Figure 2.3: Addition and Subtraction of Vectors.

the commands

z11 = Vector[P2, P3]
and
z22 = Vector[P1, P3].

The labels of z11 and z22 should be changed from Name to Caption, with captions of z1 and z2 respectively.
Subtraction is essentially the same, except that P3 is defined as

P3 = P1 - P2

to subtract z2 from z1. Then, we label z22 (the vector from P1 to P3) as−z2 and display it, but do not display vector
z11 (the vector from P2 to P3). The result is seen in Figures 2.3c and 2.3d.

Multiplication and Division

Multiplying two vectors whose coordinates are set to Complex Number will result in a point representing a complex
number. If the Algebra setting of either of the vectors’ coordinates are set to anything other than Complex Number, the
result will be the scalar product of the two vectors [1]. Hence, the best way to display the multiplication of complex
numbers as vectors is by using points to control the vectors, as described in Section 2. The goal is to demonstrate
that the product, z3 = z1 · z2, will have a modulus equal to the product of the modulus of z1 and the modulus of z2,
and that the argument of z3 is the sum of the arguments of z1 and z2. Figure 2.4 shows z3 as the product of z1 and
z2. As with addition, the algebra is done using unlabeled points P1, P2, and P3, where each vector is defined by its
respective point. Division can be shown in a similar manner.
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Figure 2.4: Multiplication of 2 complex numbers: z3 = z2 · z1.

Functions as Transformations

Basic Setup

Since complex numbers are represented in 2 dimensions, we need a plane, usually the z-plane where z = x+ iy, for
the input of our function, and a second plane, usually the w-plane, where w = u + iv, to display the image of z [2].
We dedicate the Graphics and Graphics 2 windows as complex planes and view them side by side. All function inputs,
or pre-images, will be displayed in Graphics, which will be labeled as the z-plane. The outputs, or images, will be
displayed in Graphics 2, which will be labeled as the w-plane. Starting with a simple function, we create a complex
number (point), z1, visible only in the z-plane (Graphics). Next, define w1 by entering

w1 = (z1)∧2

and making w1 visible only in the w-plane (Graphics 2). Figure 2.5 shows a trace of z1 and w1 = (z1)2 in the z-plane
and w-plane respectively.

The Locus Command

The trace in Figure 2.5 is simple and somewhat informative, but much better interaction and learning potential is pos-
sible using the Locus[ <Point Creating Locus Line>, <Point> ] command. First set up a geometric
object in the z-plane and place a point with complex coordinates on the object. As an example, create 2 points, A
and B, on the z-plane (Graphics window), then create a segment named z2Segment (anticipating the use of point z2)
between A and B. Next, create a point z2 on z2Segment by using the Point on Object tool or by entering

z2 = Point[z2Segment].

The algebra of point z2 should then be set to Complex Number (see Figure 2.1). We can now move z2Segment
anywhere on the plane by dragging the endpoints A and B. The labels for Points A and B and z2Segment should
be off. Now create a point w2 in the w-plane that is defined by a function of z2. For now we will continue with
f(z) = z2. Then we define an object to be the locus curve of w2 as defined by z2; call it w2Locus. Enter the following
commands in the input bar:

w2 = (z2)∧2
w2Locus = Locus[w2, z2]
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Figure 2.5: z and w planes side by side where z = x+ iy, and w = u+ iv.

Figure 2.6: The locus of w2 as the image of the z2 along the segment.

Figure 2.6 shows the resulting locus of w2 compared with a similar trace. The locus is much simpler and cleaner in
appearance than the trace and therefore more likely to grab the user’s attention [3]. The locus is also more informative
as we can see how the images of specific shapes look. In this case, the segment in the z-plane produces part of a
parabola in thew-plane. Furthermore, the locus is permanent, whereas the trace will disappear as soon as an adjustment
is made to the graphic. The segment z2Segment can be moved arbitrarily as can the point z2 along z2Segment.
w2Locus and w2 automatically update as z2Segment and/or z2 are updated, creating a nice interactive visualization.
The process above is not limited to segments. The point z2 could have been attached to any geometric object. For
example, Figure 2.7 explores the function f(z) = z5−1. In the z-plane, a solid-lined fixed unit circle and a dashed-line
movable circle have been created. Using the Point on Object tool, the point z2 is placed on the fixed circle and z3 is
placed on the movable circle. In the w-plane, the corresponding image points, w2 and w3 have been created using the
definitions w2 = (z2)5 − 1 and w3 = (z3)5 − 1. The loci were then created by entering

w2Locus = Locus[w2, z2]
w3Locus = Locus[w3, z3].

The line styles of the loci are set to match the styles of the corresponding geometric objects. The rest of the dots on the
solid circle in the z-plane represent the complex roots of f . They are best entered as a list, so they are a single object
in GeoGebra. By entering
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Figure 2.7: Image of f(z) = z5 − 1.

roots = {ComplexRoot[f] },
the list roots is created whose elements are all the complex roots of f(z) = z5− 1.4 With the roots displayed, the user
should notice that when z2 is moved along the unit circle from one root to another, w2 travels all the way around the
circle formed by its locus.

Returning to the function z2, Figure 2.8 shows some more ideas for loci. The construction is created in a similar
manner to that of Figure 2.7, with the addition of 2 polygons in the z-plane. For clarity, the line styles of the loci in
the w-plane match the line styles of the objects in the z-plane used to create the loci. All the points in the z-plane are
attached to the geometric objects as shown and all the objects are movable with the exception of the solid circle. As
the objects are moved in the z-plane, the corresponding loci in the w-plane will be updated.

Advanced Interaction

Finally, we add some student interaction to the worksheet. This will require the student to calculate the real component,
u(x, y), and the imaginary component, v(x, y), of w. The functions u and v are real-valued, multi-variable functions
of x and y, where z = x + iy and w = u(x, y) + iv(x, y). As usual, z and w will have corresponding indices
(z1→ w1) on the GeoGebra worksheet. To accomplish this, we need two more functions to represent u(z) and v(z)
in our worksheet. Since z = x+ iy, this is easily accomplished with the two multi-variable function entries

u(x, y) = 1
and
v(x, y) = 1,

where the 1 on the right side of each equation is just a placeholder function; the student will change them later. The
displays for both functions should be off. Once the functions u and v are in the worksheet, establish input boxes for
each with u and v being the linked object respectively. Now the student can break a function f(z) into its real and
imaginary components and enter an image point, w1, of a complex number, z1, where the real coordinate is u and the
imaginary coordinate is v. The student would enter the real-valued functions u and v into the input boxes and then
simply create w1 by entering

4Note that the argument of the ComplexRoot[<Polynomial>] command must be a polynomial.
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Figure 2.8: Image of f(z) = z2 with multiple loci.

w1 = u(z1) + i * v(z1).

The functions u(z1) and v(z1) are multi-variable functions that take the coordinates of z1 as inputs. Alternatively, w1
could be defined by

w1 = u( x(z1), y(z1) ) + i * v( x(z1), y(z1) ).

Figure 2.9 shows another quadratic function (2z2 − 3z + 4). In this example, however, the functions u and v are used
for the mappings z1 → w1 and z2 → w2 and the loci are created using techniques introduced earlier. The functions
u and v are determined manually and entered into the input boxes. Once the functions u and v are entered, new
mappings zk → wk can easily be created by defining a new complex number, zk, then entering wk = u(zk) + i
* v(zk).

Conclusion

While GeoGebra is not the most powerful computational tool, it is perfectly suited for early studies of complex numbers
and functions involving complex variables. GeoGebra provides a unique ability to work with two graphics windows
that interact with each other, which provides an engaging experience. Since GeoGebra does not handle complex
numbers with functions, the user must decide whether to use direct operations or construct functions of complex
variables using only real-valued functions. Both methods work equally well and can be used to check each other.
Students should be encouraged to explore these and limitless other possibilities.
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Figure 2.9: A function defined by real functions u and v entered in the input boxes shown on the
z-plane. w1 = f(z1) = u(z1) + iv(z1).
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A GEOMETRIC INTERPRETATION OF COMPLEX
ZEROS OF QUADRATIC FUNCTIONS

Joseph Pastore and Alan Sultan
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Abstract: Most high school mathematics students learn how to determine the zeros of quadratic functions such as
f(x) = ax2 + bx + c, where a, b, and c are real numbers. At some point, students encounter a quadratic function of
this form whose zeros are imaginary or complex-valued. Since the graph of such functions do not intersect the x-axis
in the xy-plane, students may be left with the impression that complex-valued zeros of quadratics cannot be visualized.
The main purpose of this manuscript is to show that if the zeros of a quadratic function with real-valued coefficients
are imaginary, the zeros can be seen if we use an appropriate coordinate system. For illustrative purposes, we have
used the software program GeoGebra, which allows us to create a three-dimensional Cartesian coordinate system where
imaginary zeros can be viewed simultaneously with the graph of the quadratic function they correspond to. To illustrate
this, we will apply geometric transformations to the function given by f(x) = x2 − 6x + 13 in order to visualize its
zeros, which happen to be complex-valued. Then, we will identify a particular set of complex numbers that can be used
as inputs for the function f . Using this set of complex numbers, we can construct the exact image that is produced
by the geometric transformations. Then, we may deem the two methods as equivalent ways to ultimately construct the
geometric images of complex-valued zeros of quadratic functions with real-valued coefficients.

Keywords: quadratic functions, complex roots, GeoGebra

Quadratic Functions and their Zeros

Students are taught in high school that one way to determine the zeros of quadratic functions with real-valued
coefficients is to locate the function’s x-intercept(s). For example, if we wish to find the zeros of the quadratic function
g(x) = x2− 5x+6, we graph it in R2 or the xy-plane (Figure 3.1), and we see that the function g(x) has intercepts at
x = 2 and x = 3, which correspond to the points (2, 0) and (3, 0) in R2. So, these are the zeros of the function g(x)
or, equivalently, the solutions of the quadratic equation x2 − 5x+ 6 = 0.

It is not long before students see the graph of a quadratic function such as f(x) = x2 − 6x + 134 (Figure 3.2).
Since the graph of f has no x-intercept(s), curious students might ask, “Where are the zeros located? How can we see
them?" Indeed, the reason the graph of f has no x-intercepts is because the zeros are complex-valued, and the x-axis
represents real numbers, not complex numbers. Some basic algebra allows us to verify, albeit without visualization in
the xy-plane, that the zeros do exist, and f(x) = 0 precisely when x = 3± 2i, where i =

√
−1 and i2 = −1.

For ease of exposition, throughout the remainder of this manuscript we shall refer to quadratic functions with
real-valued coefficients and complex-valued zeros as Type RC quadratic functions.
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Figure 3.1: The graph of the quadratic function g(x) = x2 − 5x + 6, which intersects the x-axis
at the points (2, 0) and (3, 0). These points correspond to the real-valued zeros of g(x), x = 2 and
x = 3.

Figure 3.2: The graph of the quadratic function f(x) = x2 − 6x+ 13, which does not intersect the
x-axis, indicating that the function f has imaginary or complex-valued zeros.
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Figure 3.3: The graph of f(x) = (x− 3)2 +4 is reflected about the line y = 4 in the xy-plane. This
produces the graph of the quadratic function given by f1(x) = −(x− 3)2 + 4, which has real zeros
at the points C = (5, 0) and D = (1, 0).

A Process for Visualizing Complex Zeros of Type RC Quadratics

Using an appropriate coordinate system, we can apply simple geometric transformations to the graph of a Type RC
quadratic function and ultimately obtain a visual image of its zeros. This process is outlined below in detail as it is
applied to the function f(x) = x2 − 6x + 13. The steps are accompanied by GeoGebra images that illustrate the
process in a clear manner.

Step I: Write the Type RC quadratic function in vertex form f(x) = a(x− h)2 + k, where the xy-plane vertex is
the point (h, k). For our example, we write f(x) = (x− 3)2 + 4, which has xy-plane vertex V = (3, 4). The graph
of f is shown once again as the green parabola in Figure 3.3. We observe that the graph of f does not cross the x-axis
since its zeros are 3± 2i.

Step II: In the xy-plane, reflect the graph of f about the line y = 4, which contains the vertex point V . The
resulting image is an xy-plane parabola or the graph of the quadratic function f1(x) = −(x− 3)2 + 4 [blue parabola
in Figure 3.3]. In general, reflecting an xy-plane quadratic function f(x) = a(x− h)2 + k about the line y = k will
yield the graph of an xy-plane parabola or quadratic function f1(x) = −a(x− h)2 + k. In our example, the quadratic
function f1 has real zeros x = 5 and x = 1 or, equivalently, x-intercepts at the two points C = (5, 0) and D = (1, 0).
These points may also be written as C = (3 + 2, 0) and D = (3− 2, 0), indicating the manner in which the zeros of
a quadratic function are distributed about the axis of symmetry. For f1, each x-intercept is two units from the axis of
symmetry, which is the line x = 3 in the xy-plane. Note that the graph of f contains the points (5, 8) = (3+ 2, 0) and
(1, 8) = (3− 2, 8), which are the preimage points of C and D, respectively, under the reflection.

Step III: Insert the zi-axis perpendicular to the xy-plane to represent the imaginary axis [blue axis in Figure 3.4],
and define the resulting right-handed three-dimensional coordinate system as (x, y, zi)-space. We now denote our axis
of symmetry as α since x = 3 represents an entire complex plane in (x, y, zi)-space. Each point (x, y) in the xy-plane
may now be viewed as the point (x, y, 0i) within (x, y, zi)-space. For example, our vertex point in (x, y, zi)-space
is the point V = (3, 4, 0i). The aforementioned points C and D are (3 + 2, 0, 0i) and (3 − 2, 0, 0i), respectively,
and their respective preimage points are A = (3 + 2, 8, 0i) and B = (3 − 2, 8, 0i) [See Figure 3.5]. Although the
insertion of the imaginary axis creates infinitely many complex planes within (x, y, zi)-space, the reader may want to
consider that one of many ways to represent an arbitrary complex number a+ bi in (x, y, zi)-space is to write it as the
point (a, 0, bi). We choose this particular representation while reminding the reader that we want to find points that
correspond to the zeros of our Type RC quadratic function f , and these points are expected to have a y-coordinate of 0.
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Figure 3.4: The (x, y, zi)-space image of the graphs of f , f1, and α, all lying in the xy-plane.

Step IV: In (x, y, zi)-space, plot the points (3, 0, 2i) and (3, 0,−2i). Next, we rotate the graph of f1 by 90◦ in
the counterclockwise direction about α, the axis of symmetry1. We denote the resulting curve as the parabola ϕ,
which lies entirely in the complex plane x = 3 [Figure 3.5]. The curves f1 and ϕ must be parabolas since they
are produced by applying rigid motions to f . Under this rotation, the points C = (5, 0, 0i) = (3 + 2, 0, 0i) and
D = (1, 0, 0i) = (3 − 2, 0, 0i) are mapped to points C ′ = (3, 0, 2i) and D′ = (3, 0,−2i), respectively, which are
the points we plotted at the beginning of this step. Since the y-coordinate for each of C ′ and D′ is 0, the parabola ϕ
intersects the plane y = 0 precisely at two points that are equivalent to the complex zeros of f , namely 3 ± 2i (see
Figure 3.5). Recall that we set out to see the solutions to the equation y = f(x) = 0. Thus the points C ′ and D′

appear to be the geometric images of the complex zeros of the quadratic function f(x) = (x− 3)2 + 4.
To summarize what we have done thus far, we began with a Type RC quadratic function. By the procedure outlined

above in Steps I – IV, the xy-plane graph of this quadratic function was reflected about the line y = 4, then rotated 90◦

counterclockwise about the axis of symmetry in (x, y, zi)-space, yielding the image of a parabolic curve that intersects
the plane y = 0 at two points. The two points of intersection, C ′ andD′, correspond directly with the complex zeros of
our Type RC quadratic function f(x) = (x− 3)2 + 4. Next, we show that this result was not a coincidence, meaning
that the points C ′ and D′ are indeed the geometric zeros of our function f .

The connection between the parabola ϕ and the quadratic function rule f(x) = (x − 3)2 + 4

There is an interesting relationship between the quadratic function rule f(x) = (x− 3)2 + 4 and points that lie on the
parabolic curve ϕ. To uncover this relationship, we will first analyze the effects of the rigid motions as they are applied
to points on the graphs of f and f1 in succession, ultimately producing points on the curve ϕ. Since (x, y, zi)-space
is a Cartesian coordinate system, we can identify the results of the rigid motions very easily. Then, we will verify the
accuracy of these results using algebraic means.

First, we take full advantage of the vertex form of our function rule and write our input values in terms of the x-value
of the vertex. Specifically, we write x-values in the form 3 + z′, where z′ is a real number or the signed-distance
from the axis of symmetry, α. Writing x-values in this form will simplify any calculations involved. For any arbitrary

1Note that our choice of rotation above is somewhat arbitrary, as a 90◦ rotation in the clockwise direction would work as well. Under such a rotation,
(3+ 2, 0, 0i) would map to (3, 0,−2i) instead of (3, 0, 2i), and the point (3− 2, 0, 0i) would map to (3, 0, 2i) instead of (3, 0,−2i). This is not
the correspondence we seek, thus the counterclockwise rotation was chosen instead.
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Figure 3.5: The (x, y, zi)-space image of the plane x = 3 (light blue), the plane y = 0 (yellow-grey),
and the graphs of f (green), f1 (blue), and the curve ϕ (purple). The complex planes x = 3 and
y = 0 each contain the points C ′ andD′, which correspond to the complex numbers 3±2i, the zeros
of the function f . Figure 3.6 provides an alternate image of this situation.

Figure 3.6: An alternate view of ϕ intersecting the plane y = 0. Note the significance of this since
the complex zeros 3± 2i correspond to the points C ′ and D′, where 3± 2i are solutions of equation
y = f(x) = 0.
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Figure 3.7: Calculation of the coordinates of an arbitrary point on the graph of f as it is mapped to a
point on the graph of f1 when f is reflected about the line y = 4 in the xy-plane.

x = 3+z′, we have f(x) = f(3+z′) = (3+z′−3)2+4 = (z′)2+4. So, points on the graph of f in (x, y, zi)-space
take the form (3 + z′, (z′)2 + 4, 0i)f . Note that any such point in the xy-plane lies at the vertical distance (z′)2 above
the line y = 4 since f(3 + z′)− 4 = (z′)2 + 4− 4 = (z′)2.

Upon reflecting the graph of f about the line y = 4 in the xy-plane, we claim that all points on f are mapped to
points (3 + z′, 4 − (z′)2, 0i)f1 on f1. Under the aforementioned reflection, it should be clear to the reader that the
x and zi-coordinates remain fixed. With the exception of the vertex V = (3, 4, 0i), all points on the graph f1 in the
xy-plane must lie below the line y = 4 at a vertical distance of (z′)2, the same vertical distance between points on
f and the line y = 4. Consequently, points on the graph of f1 must have a y-coordinate of 4 − (z′)2. Equivalently,
evaluating f1 at 3 + z′ yields f1(3 + z′) = 4− (z′)2. Thus our claim is verified both geometrically and algebraically.

The results of the reflection described above are illustrated in clear detail in Figure 3.7. Since the reflection occurs
in the xy-plane, for ease of exposition, points in Figure 3.7 are written in (x, y) form.

Finally, when the graph of f1 is rotated in (x, y, zi)-space by 90◦ about α in the counterclockwise direction, we
obtain the following results:

The y-coordinate of points (3+ z′, 4− (z′)2, 0i)f1 must remain fixed under this rotation, so that points on ϕmust
have y-coordinates of the form 4− (z′)2. For now, we seek points of the form (x, 4− (z′)2, zi).

As a consequence of the 90◦ rotation, the parabolic curve α lies entirely in the complex plane x = 3. As a result,
all points on ϕ must take the form (3, 4− (z′)2, zi)ϕ, for some real number z

By the symmetry of the parabola f1, under the 90◦ counterclockwise rotation, the value of the zi-coordinate must
be precisely that of z′ given by 3 + z′. Recall that z′ is the signed-distance from the axis of symmetry, α. As a
result, all points of the form (3, 4− (z′)2, z′i)ϕ lie on the graph of ϕ

To lend some additional perspective to the statements above, Figure 3.8 provides an overhead view of, in particular,
the pointsC andD and their path of rotation about α (Step IV), which occurs entirely in the plane y = 0. The resulting
image points C ′ and D′ are shown as well.

Summarizing thus far, if we choose a real number z′ and use our function rule to generate the point (3+ z′, (z′)2 +
4, 0i)f on the graph of f , the reflection and subsequent rotation described in Steps I – IV naturally gives rise to the
following mapping of points from f to f1 to ϕ:

(3 + z′, (z′)2 + 4, 0i)f → (3 + z′, 4− (z′)2, 0i)f1 → (3, 4− (z′)2, z′i)ϕ (3.1)



32 A GEOMETRIC INTERPRETATION OF COMPLEX ZEROS OF QUADRATIC FUNCTIONS

Figure 3.8: An overhead view of the plane y = 0, the graph of f1, and the parabolic curve ϕ, which is
produced by the rotation of f1 about α in Step IV. The graph of the xy-plane circle (x−3)2+y2 = 4
contains the path of rotation for the points C and D.

Taking z′ = 2 gives us the mapping as it relates to the points C and D and their respective preimages and images
in (x, y, zi)-space:

(3± 2, 8, 0i)f → (3± 2, 0, 0i)f1 → (3, 0,±2i)ϕ (3.2)

In general, the mapping given by (3.1) suggests there are two identifiable properties of points lying on the parabolic
curve ϕ. The first is that each has an x-coordinate of 3, which is our function’s value for h in the vertex point. The
second is that other than the vertex point, each point lying on ϕ contains a pure complex-valued zi-coordinate, meaning
z 6= 0. Given these two properties regarding points lying on ϕ, perhaps pure complex numbers of the form 3+ zi play
a role here. To establish the connection we seek between the function rule f(x) = (x − 3)2 + 4 and the parabolic
curve ϕ, we shall modify the domain of our function f , allowing for complex number inputs of this form.

To see why this makes sense, let’s analyze the transformation above more closely as it relates to the points of f1 and
ϕ. The x-coordinate 3+ z′ for points on f1 transformed to produce an x-coordinate of 3 and a zi-coordinate of z′i for
each point on ϕ. Suppressing the y-coordinate of a point (3, 4− (z′)2, z′i)ϕ lying on ϕ produces a point of the form
(3, z′i), which lies in the complex-plane x = 3. Equivalently, this point can be viewed as the complex number 3+ z′i.

Following our suggestion above, if we take z′ to be an arbitrary real number, evaluating f at 3 + z′i yields
f(3 + z′i) = (3 + z′i − 3)2 + 4 = (z′i)2 + 4 = 4 − (z′)2, which is the precise value of the y-coordinate we had
suppressed. Thus we can use our function rule to generate points (3, 4 − (z′)2, z′i)ϕ on the graph of ϕ by simply
picking an arbitrary signed distance from α, say z′, and then compute f(3 + z′i) to ultimately construct the points.
All points produced in this manner are exactly the same points produced using the rigid motions described in Steps I
– IV. Furthermore, the zeros of our function f , which happen to be the the mathematical objects we have sought to
visualize, can now be constructed as geometric objects using either of two methods. We may construct the zeros of our
function f by evaluating f(3 ± 2i) and then constructing the points (3, 0,±2i) in (x, y, zi)-space. Instead, we may
apply the rigid motions of Steps I – IV to the xy-plane graph of our Type RC quadratic function f and determine the
points in (x, y, zi)-space where the graph of ϕ intersects the plane y = 0.

Note that if we evaluate our Type RC function f using arbitrary complex number inputs of the form x+ zi, where
x, z ∈ R and x 6= 3, we will not obtain points associated with the curve ϕ. The following calculation illustrates why
this is so:

f(x+ zi) = (x+ zi− 3)2 + 4 = [(x− 3)2 + 4− z2] + 2z(x− 3)i (3.3)
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Figure 3.9: An image of the (x, y, zi)-space two-parabola system associated with f(s) = (s−3)2+4.

Since x 6= 3, if z 6= 0, then 2z(x−3)i 6= 0, hence f(x+zi) is a pure complex number2. Yet all of the y-coordinates
of points lying on ϕ are real-valued and take the form 4− z2. Thus complex numbers of the form 3 + zi are the only
complex number inputs that are associated with points on the graph of ϕ, as seen above by the mapping shown in (3.1).

A formal description about using the function rule for f to produce the parabolic curve ϕ

We now summarize in a formal yet concise manner how the function rule of our Type RC quadratic function f can be
used to construct the parabolic curve denoted ϕ:

Write the function rule for our Type RC quadratic function as f(s) = (s− 3)2 + 4, allowing s to take on all real
number values as well as complex number values of the form 3 + zi, where z ∈ R.

When s is a real number x, the output f(x) is also a real number. These values of f(x) produce the expected
graph of a parabola in the xy-plane. Furthermore, this graph is unchanged when viewed in (x, y, zi)-space, where
points on the graph of f are written as (x, f(x), 0i).

When s is any complex number of the form 3 + zi, the output f(3 + zi) = 4− z2 is also a real number. These
particular values of s and f(s) can be used to construct all points lying on the graph of the parabolic curve ϕ,
which lies entirely in the complex plane x = 3. Furthermore, all points lying on ϕ in (x, y, zi)-space take the
form (3, 4− z2, zi).

As a result, we may construct points in (x, y, zi)-space that correspond to the zeros of f . These are the points
(3, f(3 ± 2i),±2i) = (3, 0,±2i), which we now view as the geometric interpretation of the complex-valued
zeros of the function f .

Thus we may combine the graphs of the xy-plane parabola f and the parabola ϕ to be one graph or a two-parabola
system that is associated with a function rule of a Type RC quadratic function. Each individual parabola shares a
common vertex and axis of symmetry. The two-parabola system for our function f is shown in Figure 3.9.

2Note that if z = 0, then f(3 + zi) = f(3) = 4, which corresponds to the vertex point V = (3, 4, 0i).
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The General Case for Type RC Quadratic Functions

Taking advantage of our hard work and computation above, addressing the general case is straightforward. We begin
with a quadratic function f(s) = a(s− h)2 + k, where a, h, k ∈ R. If ak > 0, then f is a Type RC quadratic function

and its zeros are the complex numbers h±
√

k
a i.

The rigid motions in Steps I – IV yield the following mapping of points in (x, y, zi)-space:

(h+ z, k + az2, 0i)f → (h+ z, k − az2, 0i)f1 → (h, k − az2, zi)ϕ (3.4)

Taking z = ±
√

k
a , the mapping that produces the complex-valued zeros of f is given as follows:

(h±
√
k

a
, 2k, 0i)f → (h±

√
k

a
, 0, 0i)f1 → (h, 0,

√
k

a
i)ϕ (3.5)

Equivalently and alternatively, we can construct points on the graphs of f and ϕ by using the function rule
and appropriate input values. If s is a real number x = h + z, where z is any real number and h is fixed, then
f(s) = f(h + z) = k + az2, and the points (s, f(s), 0i) = (h + z, k + az2, 0i) correspond to the usual xy-plane
parabola.

On the other hand, if s is a complex number of the precise form h+zi, where h is the x-coordinate of the vertex and
z is a real number, then f(s) = f(h+ zi) = k − az2. Hence f(s) = f(h+ zi) is real-valued for all such values of s
and we write the points as (h, f(h+ zi), zi) = (h, k − az2, zi), which correspond to points on the parabolic curve ϕ.

Closing comments

We would like to mention that some consideration was given to writing y as a function of x and z in an effort to
approach the topic using the concept of function. Throughout this manuscript, the parabola ϕwas always referred to as
a parabolic curve, not a function. Describing the two-parabola system of f and ϕ as a function is possible, and would
first require us to construct what we define as the right-handed three-dimensional coordinate system (x, zi, y)-space.
However, we ultimately decided not to go that route and perhaps address these ideas in future works.

As seen throughout this manuscript, GeoGebra is a great tool for illustrating the concepts under discussion. Much
of the mathematical content in this article was both inspired by and deduced as a result of the authors analyzing images
created by GeoGebra. We hope to inspire other practitioners of mathematics to explore mathematics using GeoGebra,
and we encourage mathematics students to do the same.

There does not seem to be a lot of discussion in math-circles regarding the topic under discussion. We speculate
this may be a consequence of the manner in which quadratic functions are presented at the secondary school level.
Specifically, secondary school mathematics generally does not require students to evaluate Type RC quadratic functions
using complex number inputs. Despite any unfamiliarity the reader may have with the content contained in this
manuscript, we hope that the mathematics was presented in a clear and thorough manner, perhaps satisfying the
curiosity of some mathematics instructors and students.
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Abstract: Graphing sequences is a common approach to explore limits both conceptually and computationally. In the
traditional approach, the first terms of the sequence are the primary focus, however, we present a GeoGebra applet that
facilitates the determination and understanding of limits by illustrating an inverted perspective that emphasizes the tail
of the sequence instead. Additionally, two robust and valuable GeoGebra topics/commands will be highlighted in the
applet, in particular Lists and Sequences. Finally, we conclude with a discussion of several issues surrounding the limits
and GeoGebra.
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Introduction

The limit is a key concept in mathematics in general, and one of three fundamental ideas of calculus [5], the other
two being the derivative and the integral, both of which are defined in terms of limits. As such, students are expected
to know how to determine a limit, develop an intuitive understanding of the mathematical limit, estimate limits from
graphs or tables, and find limits at or involving infinity [1]. So, it stands to reason that much instructional time is
devoted to developing this concept. A recent NSF-funded study [4] explored the relative amount of instructional time
spent teaching and learning various topics in first-semester calculus and found that, on average, 15% of instructional
time involves limits. Although typically in first-semester calculus, only limits of functions are considered, perhaps
working with limits of sequences is more natural and easier for students [5].

In this article, we present a GeoGebra [3] applet that utilizes the tail of a sequence instead of the traditional use of
the first “few” terms. Prior to this development, we include prerequisite mathematical definitions and GeoGebra syntax
and commands. We provide two examples that illustrate convergence and divergence of sequences. As a bonus, the
method we use will provide visual insight into a related advanced topic. Lastly, we discuss issues discovered during
the preparation and writing of this manuscript.

Mathematical Sequence and Limits

We start with the definition of a real sequence as an ordered list of numbers. A sequence of real numbers is a function
f : N → R defined by fn = f(n) mapping the natural numbers to the real numbers. The subscript is referred to as
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the index. According to this definition, because f is a mathematical function, it is assumed that all domain values are
used, therefore, all sequences are infinite.

Formally, the limit of a sequence fn is the number L to which the sequence converges if for every real number
ε, there exists a natural number N such that for every natural number n > N , the terms fn satisfy |fn − L| < ε.
Literature abounds documenting the difficulty in developing a firm understanding of this definition (e.g., [2], [6], [8],
[9]).

GeoGebra Lists and the Element and Sequence Commands

Lists are important objects and are used in many contexts in GeoGebra. Lists can contain numbers, points, polygons,
circles, and even other lists. For example, a matrix is defined in GeoGebra as a list of lists. Lists are created using
bracket symbols, { and }. For example, a list, L, of even positive integers less than or equal to 20 can be created using
the syntax at the input bar as follows:

L={2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

Elements of a list can be obtained using the Element command. In particular, the nth element of a list L is
obtained with the command: Element[L,n]. For example, the number 6 in the above example is obtained using
Element[L,3].

A sequence in GeoGebra is a (special) list and can be created using the Sequence command. The syntax to create
a list using the command line is:

Sequence[<expression>, <variable>, <start>, <end>]

For example, the sequence of even numbers from 2 to 20 (L above) can be generated by

L=Sequence[2*k, k, 1, 10]

The Element and Sequence commands are essential when working with lists in GeoGebra.

The Tail Emphasis

When considering the limit of a sequence, the “tail" provides all the necessary information about the convergence or
divergence of the sequence as well as other details of interest. The tail is considered to be the terms of the sequence
greater than or equal a certain index value, i.e., fn for all n ≥ m for some m. This is sometimes called an m-tail.
Therefore, instead of graphing the sequence f1, f2, f3, . . . using the points (1, f1), (2, f2), . . . and attempting to view
this graph “at infinity", an alternative method presented by Olson [7] suggests plotting the points(

1

m
, fm

)
,

(
1

m+ 1
, fm+1

)
,

(
1

m+ 2
, fm+2

)
, . . .

which represents the tail of the sequence. The successive terms are plotted from right to left approaching the y−axis
and represents the “tail". In effect, the graph displays the ultimate behavior of the sequence. If the sequence converges,
it will be visually obvious that the terms are approaching a particular value on the y−axis. Additionally, it is easy to
add the ε tolerance to the limit value. Divergence is equally obvious in that there will not be one value toward which
the terms are converging.

Modifications in the GeoGebra applet to increase n or produce (graphically) terms beyond a specified index are also
easy to obtain. The general construction protocols for this method are provided below followed by two examples.

General Construction Protocols

Define a value for N ∈ N.

Define a value for m ∈ N, for the m tail.
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(a) Traditional Approach (b) Alternative Approach

Figure 4.1: Plots of the sequence f(n) = 1 + (−1)n/n2

Define a function in n to use in the sequence command: f(n) (only need to edit this function to produce other
sequences)

Define a sequence f\_n = Sequence[f(k), k, m, N]

Define the tail sequence (of points) using the Sequence and Element commands: Sequence[(1/k,
Element[f n,k]),k, m, N]

Example 4.1 We first illustrate the tail method using the sequence defined by f(n) = 1 + (−1)n/n2 and produce
the points (1/1, f1), (1/2, f2), (1/3, f3), . . . and we show a side-by-side comparison with the traditional “early terms”
depiction (1, f1), (2, f2), (3, f3), . . . . We enter at the command line the following:

N=50

m=1

f(n)=1+(-1)ˆn/nˆ2

f n = Sequence[f(k), k, m, N]

Tail = Sequence[(1/k, Element[f n,k]),k, m, N]

The result is shown in Figure 4.1.

Example 4.2 We illustrate divergence using the tail end of the sequence f(n) = 2/5+sin(3n)(n+10)/n, redefining
only f(n) in Example 4.1, f(n) = 2/5+sin(3n)(n+10)/n. The results is shown in Figure 4.2. Observe that
in this case, the tail makes it possible to view the lim sup and lim inf of the sequence, two important concepts in
mathematical analysis.

Discussion

Interactive dynamic software is one way to foster understanding of mathematical limits. In fact, there already exist
hundreds of deftly designed GeoGebra applets available on GeoGebra Tube (tube.geogebra.org) dedicated to developing
limits, including one-sided limits, limits at infinity, the ε-δ definition, the squeeze theorem, limit approximations and
calculations, etc. This immediately begs the question concerning the effectiveness of the current applets used to develop
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Figure 4.2: Tail of the divergent sequence fn = 2/5 + sin(3n)(n + 10)/n. In this case, however,
the tail makes it possible to view the lim sup and lim inf , two important concepts in mathematical
analysis.

the limit concept. With all of these applets, are students still having difficulty with understanding limits? Furthermore,
there seems to be a lack of literature reporting the use and effectiveness of these apps.

In preparation for this article, the task of wading through and exploring hundreds of available applets required a
considerable amount of time and was fairly overwhelming. Clearly, this would be a daunting task for any teacher
searching through materials while preparing a lesson on this topic. One suggestion in this regard would be to
implement some sort of user rating to aid in identifying highly effective (highly used) applets. Additionally, more
detailed descriptions and better/longer list of keywords could be helpful during the selection process.

Further, there needs to be more material devoted to truly creating an intuitive understanding of the limit, not
just dynamically presenting examples found in standard textbooks. One suggestion is an applet that illustrate the
limit as a process of successive approximations for which materials are scarce. Examples include: approximating
geometrical figures (e.g., circle) with an increasing number of sides of a polygon, approximating arc length of a curve,
approximating roots of an equation, the area under a curve, or the slope of a tangent line. Although several applets
exist that demonstrate the definition of derivative as the limiting process of slopes of secant lines or the integral as the
limit of Riemann sums as the number of rectangles increases, these applets are not tagged with “limit" or “concept of
limit" as keyword(s).

Conclusion

We developed a GeoGebra applet based on [7] for presenting the concept of the limit. Although there are many
GeoGebra materials covering limits, currently none exist that emphasize the tail of a sequence. This method is robust
and can also provide an introduction into the related (but more advanced) notions of limit superior and limit inferior.
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Abstract: This article explores a problem solving strategy called “messing around” that is particularly apt for online
course work in GeoGebra. While traditional math problems may require students to search deliberately for a specific
solution, “messing around” employs a more fortuitous approach. We dissect this approach and examine multiple
GeoGebra apps that support “messing around” by providing students with a sandbox for mathematical experimentation.
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Introduction

There is already a wealth of research exploring students’ problem-solving strategies in mathematics. Pólya [14]
proposed students use a series of heuristics such as “work backwards,” “consider special cases,” and “solve a simpler
problem.” These heuristics are employed through four steps: (1) understand the problem, (2) make a plan by selecting
one of the heuristics, (3) carry out the plan, and (4) review your work. Most subsequent problem-solving research has
simply expanded on Pólya’s heuristics, scaffolding the process in similar ways [4, 10, 13]. Schoenfeld [17] found that
amateur problem-solvers tended to select one technique and stubbornly stick with it even when their approach was not
working. On the other hand, advanced problem-solvers spent more time testing different strategies until they found
the right one. In all of this work, the prevailing idea is to ask students to think metacognitively about the different
strategies available to them so they can work more deliberately towards a clear end-goal.

Most of this research was conducted before the advent of so called new media technologies: interactive, digital
media such as blogs, wikis, video games, social media, and dynamic graphing software. As such, this research
does not consider how new media technologies might influence the problem-solving process. In a recent study [16],
Santos-Trigo and Moreno-Armella examined how teachers and learners use new media technologies like GeoGebra
to communicate about mathematics during the problem-solving process. They observed that new media can provide
online resources for students to extend discussions beyond the classroom, and these technologies also offer interactive
models of mathematical objects that students can use to test their understandings as they work. However, research in
this direction is still very limited, and most new media research focuses on users as “digital natives” or “millennials,” at-
tributing shifting forms of engagement to the demographics of users rather than to features of the medium itself [11, 15].
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Do new media technologies like GeoGebra enable non-traditional problem-solving strategies? We demonstrate one
particular problem solving approach, “messing around,” which GeoGebra facilitates quite well. We’ll describe several
GeoGebra apps that encourage this approach, and explain how they were used in a hybrid, inquiry-based, community
college Precalculus course. This class was “inquiry-based” in the sense that students used class time to work through
scaffolded activities and make sense of mathematics on their own; there was very little teacher-led instruction in
the form of lectures. The class was “hybrid” in the sense that students met face-to-face half as often as students in
other sections of Precalculus, and this reduced class time was supplemented with online work. Students were asked
to maintain a Wordpress blog about math. They selected two prompts from a menu of assignments each week and
responded to them on their blogs. Many of these prompts used GeoGebra apps. We’ll discuss these apps, and look at
a few examples of student work.

The Challenges of Learning Online

Online learning presents new challenges and limitations not encountered in face-to-face classrooms. Consider some
of the challenges a student might face while working on the following problem.

For what input x does the function f(x) = −x2 + 5 produce the output 4?

1. The student may not understand key terminology like “function” or “input.” In a face-to-face classroom, this
student might ask their instructor or a peer for clarification, but these resources are not immediately available to
the online student. At best, they might look these terms up in a book or online, or they might send their instructor
an email and wait for a reply. Even if the student knows where to look, searching for these terms requires an
additional investment of time and energy that’s unnecessary for the face-to-face learner.

2. A student may not know how to evaluate the function. Again, the student would have to look this procedure up,
or email an instructor or a peer and wait for a reply.

3. Even if the student understands the terminology and the process of evaluating a function, they may not know
where to start. How does one find the correct input? A student could guess-and-check, plugging different x’s
into the function and hoping for the right y. That process is tedious, and it’s difficult to measure one’s progress.
Suppose the student tries 34 different inputs and none of them produce the right output? Have they made any
more progress than the student who tried only two inputs? At what point should this student give up and try
something else? If the student does not already know to set up an equation and solve for x then nothing in this
problem will suggest that approach.

4. In the best case scenario, the student understands the terminology, knows how to evaluate the function, and has
the wise idea to set up an equation, but they still may not know how to solve the equation.

This list is not exhaustive, but the point is that none of these challenges can be overcome without looking the
answer up or asking another person for help. As a result, many online classes follow an acquisition model of learning.
Students watch a video and take a multiple choice quiz to ensure they’ve acquired the “correct” understanding of
the material. They may learn to mimic a rote procedure, but how much are they engaged in authentic mathematical
problem solving? This type of online instruction is akin to face-to-face lectures; it does not enable the type of active
learning that inquiry-based classrooms aspire to engender.

Indeed, Marra and Jonassen [9] examined popular learning management systems (LMSs) like Blackboard and We-
bCT and concluded that because these systems “do not support the use of alternative forms of knowledge representation
by learners, authentic forms of assessment, and the use of distributed tools to scaffold different forms of reasoning,
the range of student learning outcomes is restricted to reproductive learning.” Blackboard acquired WebCT in late
2005 [1], and remains the most popular LMS today with roughly 32% of the market share [8]. In a 2014 blog post [7],
George Kroner, a former development manager at Blackboard, observed that “while LMSs have evolved over time,
they generally have the same capabilities that they had back in the late 1990s.” The world has changed a lot since
2001, but the limitations identified in Marra and Jonassen’s study have not gone away.
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Jonassen et al. [6] encourage instructors to look beyond these limitations and focus on technology not as a tool to
teach with, but rather as “an excellent tool to learn with.” Thinking about technology as a “tool to learn with” requires
an understanding of how people learn online. Mizuko Ito and fourteen other researchers [5] conducted an extensive,
three-year ethnographic study of the way young people communicate and learn online, categorizing this engagement
into three basic “genres of participation”: “hanging out,” “messing around,” and “geeking out.”

“Hanging out” refers to friendship-driven forms of participation like sharing photos from a party on Facebook
or exchanging texts with a friend.

“Messing around” describes casual, interest driven experimentation with new media technologies. This category
includes what Ito et al refer to as “fortuitous searching”: “moving from link to link, looking around for what many
teenagers describe as ‘random’ information” [5, p. 54]. This type of search is open-ended rather than goal-driven.

“Geeking out” refers to more intense interest-driven activity with more sharply focused goals. This might include
activities like maintaining a blog on a niche interest or editing a video.

It’s important to note that these are “genres of participation,” not genres of people. Rather than casting people into
rigid categories like “digital natives” or “millennials,” Ito et al acknowledge that an individual can be a “luddite” in
one setting and a “geek” in another.

These researchers found that certain activities can bridge the divide from one form of participation to another.
They note that “‘hanging out’ with friends while gaming can transition to more interest-driven genres of what we
call recreational gaming” [5, p. 17]. Perhaps, “messing around” with recreational mathematics can then transition to
“geeking out” about algebra?

With this in mind, we created several GeoGebra apps that serve as “distributed tools to scaffold different forms of
reasoning.” Each of these apps enables students to “mess around” with new mathematical ideas before transitioning to
more traditional work. In the next section, we present one such app, and then explain how it enables problem-solving
strategies not available in a traditional algebra problem.

Function Machines in GeoGebra

The Function Machines app1 presents users with four machines and asks them to make the outputs of all four machines
the same. Students “mess around,” testing different inputs in each machine to see what type of output it will produce.
A label on each machine also provides a formula for the output. When the student provides an input that is not in the
domain of the function, the output will display a question mark. See figure 5.1 below.

This task is open-ended; there are several different correct answers, but students can begin the task with a “fortuitous
search” and discover the properties of functions along the way. The app will also confirm a correct solution, presenting
the student with a congratulatory message upon their success.

In many ways, this is a richer, more complex exercise than the algebra problem described above, and yet most of
the challenges attributed to that problem do not occur here.

The student does not need to know any special mathematics terminology to start working on this problem. The app
presents students with a readily identifiable metaphor about machines in the real-world, and any other properties
of these machines can be discovered by experimenting with different inputs.

The student does not need to know how to evaluate a function. In fact, they can experiment with different inputs
to form their own hypothesis about how the formulas for each machine relate to the output.

The GeoGebra app automates a lot of the tedious calculations that made guessing-and-checking a poor strategy
in the algebra problem above. The app also provides four functions rather than one. If a student cannot produce

1 http://tube.geogebra.org/m/2870887
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Figure 5.1: A student has successfully made all four outputs the same in the Function Machines app.

the desired output on one machine, they can switch to another and continue working. Thus, it’s easier to get a
sense of progress if the student can produce the desired output on two or three of the four machines.

This GeoGebra app is not a panacea. On its own, it will not teach students how to set up and solve the requisite
equations, but it does allow students to engage in authentic online inquiry before learning more traditional techniques.
By “messing around” in the app, students can begin to make meaning on their own, and this meaning will later support
their understanding of the algebra. The Function Machines app enables “messing around” whereas the algebra problem
requires some heavy “geeking out.” Traditional algebra problems are still important, but “messing around” may be a
necessary precursor to “geeking out.”

Anatomy of “Messing Around”

By our own observations, the following five criteria seem to be necessary (if not sufficient) components of “messing
around.”

1. “Messing around” requires very little domain-specific knowledge. Students did not need any special terminology
or algebraic skills to start working with the GeoGebra app.

2. “Messing around” allows for “fortuitous searches.”2 A student can play around with different inputs until they
stumble across an answer that works. This often produces the perception for students that they are “just about to
get it.”

3. “Messing around” entails a built-in “control of error” in the sense that Montessori used this term [2, p. 80–81].
In other words, some element of the problem or app will verify the student’s answers. The Function Machines app
calculates the output of each function so the student can confirm whether or not they understand how to evaluate
the functions. Likewise, when a student makes all four outputs the same, the app presents a congratulatory
message, validating that they did it correctly.

2 In the field of artificial intelligence, problem-solving is often conceived of in terms of search-algorithms [12]. In some sense, any problem-solving
technique is a search (fortuitous or otherwise) for a solution. As mentioned in the introduction, Schoenfeld [17] observed that amateur problem-
solvers tend to get stuck on one strategy even when that strategy is not working. Advanced problem-solvers take a more deliberate approach,
switching between strategies until they find the right one. In some sense, the distinction between “messing around” and “geeking out” is as simple
as distinguishing between fortuitous and deliberate searches.
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4. “Messing around” is portable. The mobile nature of GeoGebra means that students can work on this app
anywhere, thereby maintaining the casual nature of “messing around.”

5. “Messing around” does not require one’s full attention. A student can play around with the GeoGebra app
while hanging out with a friend. It’s a casual and therefore engaging activity that invites the transition to deeper
forms of engagement when ready.

As an example of these principles at play, consider the following excerpt from a student’s blog.

I use the function app and challenged myself to see if I could make the outputs of all 4 functions the same. After 10
minutes of “Guess and Check”, I figured it out. The first function needs an input of 16 to equal 4. The second function
already equals 4 because the default of the input was 1. The third one was the trickiest one for me but eventually realized
that the input needed to be 4. Last but not least, the fourth one needed an input of 2 to equal 4.

This student identifies their strategy as “Guess and Check,” a form a “fortuitous search.” However, they appear to
be doing more than just randomly plugging in numbers. They note that “the third one was the trickiest one for me
but eventually realized that the input needed to be 4.” The student found a solution that worked for three of the four
functions. They felt they were were “just about to get it” and thus felt confident enough to persist until they found an
answer.

Sail Away

With these distinctions in mind, let’s look at another example. The Sail Away app3 prepares students to understand
trigonometric functions and their connection to the unit circle. “Messing around” with this app will help students later
“geek out” and solve problems such as the following.

How are the graphs of sin(x) and sin(4x) related?
What is the maximum value of the function sin(x)? For what x does it achieve

this maximum?

The app (in figure 5.2 below) shows a sailboat floating next to a dock. Beneath the dock is a circular dial with the
instructions “rotate counter-clockwise.” Rotating the dial raises and lowers the tide. The app’s instructions suggest
rotating the dial counter-clockwise, but the app does not forbid students from rotating the dial in the opposite (negative)
direction. Students can also click on the “Animate Sail Boat On/Off” button, and the boat will begin to sail away,
tracing its path as it moves. A “seconds” counter beneath the dock keeps track of time throughout the boat’s animation.
A wave is drawn along the water as a dashed line. Students are asked to trace the path of this wave using the sailboat
and the dial. This task requires precise eye-hand-coordination and some trial-and-error.

The prompt also asks students how many times the dial goes around the circle in 8 seconds? This app is embedded
in a GeoGebra book with subsequent examples, each showing waves of varying period. By focusing on the speed of
the dial, students begin to realize that turning the dial faster produces a smaller period and turning it slower produces
a larger period. As demontrated in figure 5.3 below, students were also able to connect the peaks and troughs of the
wave with the top and bottom of the circle.

Again, consider how this app demonstrates all five criteria for “messing around.”

1. Little Domain-Specific Knowledge: Students do not need to know anything about sine functions to begin
working with the app. The context of a boat floating next to a dock is familiar to everyone and thus students can
draw on their real-world experiences to reason about mathematics.

2. Fortuitous Searches: Through trial-and-error, students can experiment with navigating the boat. They can see
how rotating the dial affects the graph and thus make sense of the scenario by playing with the app.

3. Built-In Control of Error: The app shows the wave as a dashed line and traces the boat’s path as it moves.
Students can visually compare the boat’s trace with the sine function. They do not need to consult an instructor
or a book to verify their answers.

3 http://tube.geogebra.org/m/JENexAZC
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Figure 5.2: A student traces the wave by rotating the dial counter-clockwise.

Figure 5.3: A student demonstrates their understanding of the curve’s maxima and minima by
observing that “at high tide the dot is located at the top of the clock (12).”
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4. Portable: The app is portable by virtue of GeoGebra being portable.

5. Does Not Require Full Attention: Students can play with the dial and intermittently attempt to trace the wave
while hanging out with a friend or working on other tasks.

As an example of how persistent students can be when “messing around,” consider the following student blog entry
titled “Annoying little Boat.”

This assignment is harder than it looks. I restarted many times because the tracing wasn’t cute. In order to make the dot
move you move it clock wise, it moves down until it fits 6 then it moves up until it hits 12 and then it goes down again.
The highest tide is at 12 and the lowest is 6. You need to move the dot slow for you to be able to trace the ones with big
gaps like the ones in sail boat 1 and 2. For sail boat 3 and 4 you need to move the dot faster. If you move it slow then
you will create big waves and if you move it fast it will create tight waves.

This student is clearly irritated with the “annoying little boat,” and yet they continue to work on the problem
precisely because it enables them to “mess around” until they find a suitable solution. Likewise, the student is aware
of the problem’s built-in control of error as they “restarted many times because the tracing wasn’t cute.”

Note that this student overlooked the app’s instructions and chose to move the dial clockwise. This also demonstrates
some of the limitations of “messing around.” The student is able to develop a surprising level of understanding about
the trigonometry of the unit circle, but without explicit instruction, they will not be aware of the convention of tracing
positive angles in the counter-clockwise direction. On it’s own, this app will not teach the student formal trigonometry,
but it does allow the student to start making sense of the mathematics on their own without a deliberate strategy in
mind and without immediate access to their instructor.

Additional examples of apps that support “messing around” include the Composition of Functions app4, the
Exponents Game5, and the Radians Game6. We suggest the reader “mess around” with each of these apps, and
consider for themselves the extent to which they do or do not align with each of the five criteria identified above.

Why GeoGebra?

We’ve provided several apps designed in GeoGebra, each of which enables students to “mess around” with new math-
ematical ideas before engaging in more traditional classroom work. Each of these apps could have been developed
without GeoGebra. They could have been programmed by hand in Javascript or constructed using a platform like
GDevelop7. Programming apps by hand is time-intensive and requires specialized knowledge that most teachers do
not have. GDevelop requires a smaller time investment and virtually no coding, but it does not have the same built-in
mathematical functionality as GeoGebra.

The advantage of GeoGebra is that it provides a quick and easy way to build one-off apps for specific mathematical
problem-solving situations. Educators can eschew monolithic tools like Blackboard in favor of their own DIY creations
much along the lines of what Jim Groom has termed “edupunk” teaching [3]. With a critical mass of creators, this could
be a powerful pedagogy, enabling new problem-solving strategies for a new media landscape. As we’ve demonstrated,
new media provide opportunities for students to engage in mathematical thinking without developing a deliberate
strategy or a clear end-goal. By “messing around,” students can engage in authentic mathematical problem-solving
without appealing to their instructor every time they veer off the beaten path. This more casual form of engagement
can form a gateway to more serious “geeking out” such as traditional homework problems and face-to-face classroom
instruction.

4 http://tube.geogebra.org/m/xKCGjZxj
5 http://tube.geogebra.org/m/3143617
6 https://www.geogebra.org/m/VWcWKR9E
7 http://compilgames.net/
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SURVIVING ON MARS WITH GEOGEBRA

Lindsey States and Jenna Odom

Miami University, OH

Abstract: In this paper, the authors describe an interdisciplinary lesson focused on determining how long an astronaut
can survive on Mars. The lesson utilizes resources provided by NASA within an inquiry-based context and is aligned
to the Common Core modeling standard. The authors detail the use of a GeoGebra applet that encourages students to
explore their own questions.1

Keywords: problem solving, inquiry-based learning, modeling, GeoGebra

Introduction

With the increased popularity of technology in school classrooms, there has been a corresponding call for inquiry-based
learning (IBL). Edelson (1999) and others define IBL as an instructional approach in which students are presented with
problems that are challenging and unfamiliar. Within an IBL classroom, students are encouraged to ask questions,
discuss ideas and possible solution strategies with peers, and apply newfound knowledge while solidifying their answers.
IBL aligns well with Standards for Mathematical Practices advocated within Common Core State Standards2.

When attempting to create a problem that is centered around IBL, Common Core State Standards, and Standards for
Mathematical Practices, teachers must consider how much information, time and resources to provide their students.
These concerns will be addressed through the exploration of the following problem:

How long can an astronaut survive on Mars with a stockpile of 8,000 potatoes?

The task is inspired by the popular film, The Martian. Lead actor, Matt Damon, is stranded on Mars until his team is
able to rescue him. Damon’s character keeps a video diary documenting the passing days. Students will be shown a
short clip of The Martian depicting the first video diary entry once the astronaut is aware of his situation. After this
clip has been shown, students will be asked how long they think the astronaut can survive on Mars.

The original problem is ill-defined by design. To successfully answer the problem, students must formulate and
explore many secondary questions such as the following:

1Originally developed as part of a NASA Space Consortium Grant.
2HSF.LE.A.1.A: Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors
over equal intervals; HSF.LE.B.5: Interpret the parameters in a linear or exponential function in terms of a context.
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1. How many calories does the average male/female need in a day to survive?

2. How many calories does a potato provide?

3. What is the distance between Earth and Mars?

4. How long does it take to get to Mars?

5. Are there factors in daily life that would reduce calorie intake (for example, exercising)?

Note that students are not required to answer all of these questions. As part of the IBL process, students are
encouraged to work in groups to formulate their own researchable questions and determine solutions to the original
problem. Such an approach supports a view of inquiry promoted by the National Academy of Sciences—one in
which students (a) question, (b) investigate, (c) use evidence to describe, explain, and predict, (d) connect evidence to
knowledge, and (e) share findings (Shavelson and Towne, 2002). These five steps are addressed in the lesson to ensure
that students are working on critical thinking skills and developing a deeper understanding.

Students work in small groups to explore questions and visualize the problem scenario with the applet. Once
students have generated estimates of the maximum survival time, the teacher plays a clip from the popular movie,
The Martian, that reveals an answer to the initial problem scenario. This viewing leads to yet more student questions
including queries regarding accuracy and precision, model parameters, and the plausibility of the movie’s findings.
Such questions reveal that quantitative findings, particularly those generated with mathematical models, are subject to
argument, change, and interpretation.

Student Exploration

Surviving on Mars is envisioned as part of a three-day interdisciplinary lesson developed to expose students to NASA
materials and linear relationships in an inquiry-based manner using a GeoGebra sketch. The three-day lesson is
structured in the following manner.

Day 1 A clip from The Martian will serve as an engaging hook, resulting in curious and intrigued students. Then
students will move between four different “space” stations in small groups. The stations are set up to foster student
engagement and deeper student understanding of the problem by targeting four different styles.

1. Visual learning: Students at this station will watch a short clip from NASA discussing the importance of space food
to astronauts. After viewing the video, all members of the group will work together to complete a comprehensive
worksheet.

2. Auditory learning: Students at this station will take verbal directions to complete a collaborative task. Students
will calculate the distance between Earth and Mars on a specific day and time given by the teacher, and then use
the solution to determine how long it takes a space station to reach Mars.

3. Reading/Writing learning: Students will be presented with a NASA article explaining the concept of growing
plants and vegetables. After reading the article, the group will work together to complete a reflective assignment
showcasing the new information. Students will write a paragraph summary and come up with a short oral
presentation or a multimedia project.

4. Kinesthetic learning. Group members will weigh an actual potato and estimate its caloric content.

Day 2 The second day of the lesson will consist of applied mathematical concepts and the collaborative journey
toward a solution to Surviving on Mars. Students will rejoin their group members to discuss the data they collected
and to discover relationships between calories needed and the time a human can survive. A Geogebra applet (see
Appendix) will be provided to help students model the newly uncovered relationship. Students will be given this
applet after completing several fundamental calculations to determine that the relationship between potatoes eaten and
number of calories is, in fact, linear. The applet will allow students to formulate observations and questions regarding
Surviving on Mars.
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Target observations for students

1. When the variable ‘workout’ is factored into the problem the relationship remains linear.

2. There is a range of calories that the astronaut must stay within to survive. This range is the same range that
students discovered during station work with NASA materials on day 1 of the lesson.

3. The point P represents the linear relationship between the number of calories in a potato and the number of
potatoes eaten.

4. When workout time is considered, the point P moves with respect to workout time as well.

Target questions for students

1. Are there other factors that may affect the astronaut remaining in the optimal range on the graph?

2. Are there any additional factors that could be added to the graph to create a nonlinear relationship?

3. Is there any way to incorporate the concept of days survived into the applet?

Students will continue working with their groups to determine concrete answers to more direct questions. Specifically,
students are asked to examine the following questions.

4. As the number of potatoes increases, what happens to the number of calories?

5. As the amount of workout time changes, what happens to the point P ?

6. Upon examination of the point P , what relationships are causing the point to move?

7. What is the minimum number of calories the astronaut can consume in a day to survive?

Classroom time will be dedicated to applet exploration so students can better understand mathematical concepts behind
the linear relationship. The main purpose of the applet is to provide students with a visual way to calculate the number
of potatoes that can be eaten in a given day. Once students determine that number, they can use the result along with
information provided in Surviving on Mars to find a solution. Students are then challenged to modify the applet in a
way that produces a solution to Surviving on Mars. This task introduces various new elements of consideration. First,
students must discover how to effectively manipulate the existing applet to ensure that it depicts the desired result.
Second, the students will have to present a new condition to be considered in the existing relationship (number of
calories burned while sleeping or number of calories burned when not exercising). By adding additional obstacles to
the homework, students are required to utilize the problem solving techniques discovered during class to work through
the homework alone.

Day 3 At the beginning of class, a final clip from The Martian will show students how long filmmakers expected
the astronaut to survive. This information will allow students to compare their answers to the film while exploring the
plausibility of various results. In addition, students will be able to contemplate what could have skewed their results
or the results in the movie. Further analysis of results and supporting mathematics solidifies the applicability of linear
relationships in everyday life.

Purpose of Technology

The implementation of technology within this lesson offers multiple benefits that allow more comprehensive under-
standing to students. The sketch allows students to work at their own pace as they uncover linear relationships in
an interactive manner. Sliders in the sketch afford students the opportunity to interact with variables in a way that
makes them come alive. As students drag sliders within the sketch, they discover that workout time effects the caloric
intake but does not affect the number of potatoes eaten per day. Moreover, the applet provides students with visual
representations of the problem scenario while automating many of the arithmetic calculations that otherwise distract
students from conceptual understanding—specifically the linear relationship between potatoes consumed and calorie
intake. By automating the repeated calculation of the y-value for point P , the students will be able to focus on the
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path that point P takes—a line with positive slope. The applet effectively eliminates discrepancies in results caused
by student error. Given that there is a range of acceptable potato consumption, not all students will arrive at the same
answer. However, all students should reach the understanding that an increase in potato consumption causes a direct
increase in calories. In contrast, an increase in time spent exercising causes a decrease in calories and no change in
potato consumption. This will result in students having a variety of answers, all of which are plausible. An additional
benefit is the speed with which the students will be able to manipulate variables. Sliders allow students to quickly see
how changes in variables affect the linear relationship in various instances. Sliders are not the only dynamic features
of GeoGebra aiding students. Tracing the point on the graph to clearly show students the linear relationship between
potatoes and calories per potato is another dynamic feature. The ability to factor in, or not factor in, calories burnt
while working out by the use of a checkbox also adds to the benefits of the applet. Overall, students’ use of technology
will allow a fuller comprehension of linear relationships.

Conclusion

To implement this lesson successfully, students need to be familiar with the use of technology and inquiry in the
mathematics classroom. When students are accustomed to both of these areas, the focus of the lesson can remain
on the mathematics. As a result, throughout this Mars-themed lesson, students are encouraged to gain a deeper
understanding of mathematical concepts, specifically linear relationships. Additionally, students reflect on their results
by providing evidence for their conclusions. By the end of the lesson, students utilize their knowledge of modelling,
prove linear functions grow by equal differences over equal intervals, and interpret the parameters in a linear or
exponential function in terms of a context. This lesson challenges students, but, through the use of scaffolding and
engaging activities, the goals of the lesson can be achieved. The addition of the GeoGebra applet allows students to
visualize the relationship among variables. By asking students to produce a modified applet as a homework assignment,
they are also given the opportunity to improve their critical thinking and problem solving skills.
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Appendix—Steps for Creating the Surviving on Mars Applet

We begin by specifying parameters of the graphics window. The axes of the graph need to be modified to take into
account caloric values of the problem scenario. Because there can not be a negative number of potatoes consumed
or minutes working out, the axes need to be set to only show positive values. Furthermore, we decided to place the
maximum number of potatoes consumed to be 30 and the maximum calorie amount to be 3500. These settings are
illustrated in Figure 6.2. Figure 6.3 shows the completed graph with axes scaled. Additionally, we added text boxes
to label the x-axis as potatoes and y-axis as kcals.

In keeping with realistic expectations of survival rates, we determined what level of kcals consumed per day for
an average male would correspond to obese and malnourished levels. We determined that 2500 kcal and 1500 kcal,
respectively, would fit this requirement. We then inserted a line a, corresponding to y = 2500, and line b, corresponding
to y = 1500, by entering these equations into the input box. From there, we decided to alter the properties of the line
for aesthetic purposes. In Figures 6.4 and 6.5, we illustrate how to modify object properties. Figure 6.6 shows both
lines red and dotted

Next, we began to add the manipulated elements. First, we created a checkbox with the caption ‘Workout’ and
corresponding Boolean valueC. A slider was created with the same caption and values ranging from 0-15, incremented
by one unit. A similar process was done to create the checkbox and slider associated with ‘Potatoes’ and Boolean
value D. Figure 6.7 shows how to create the ‘Workout’ check box.

The final step included adding the point P , representing the relationship between potatoes consumed and calories
available. The equation for this point shows that the x-value will be the number of potatoes consumed. The y-value
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Figure 6.1: Window settings in GeoGebra.

Figure 6.2: New window.
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Figure 6.3: Line Style.

Figure 6.4: Line color.
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Figure 6.5: Completed lines.

Figure 6.6: Workout checkbox.
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Figure 6.7: Workout checkbox.

Figure 6.8: Completed initial sketch.

reflects the idea that calories available will be calories consumed. For calories consumed, we determined that an
average potato has 291 calories. For calories burned, the teacher determined that an average male will burn 200
calories per hour of working out. Therefore, the calories available is the number of hours spent working out multiplied
by 200 subtracted from the number of potatoes consumed multiplied by 291. Figure 6.8 shows where the equation
should be entered. Figure 6.8 shows the final product.
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SHORT PRESENTATION ABSTRACTS

8.1 Volume of Solids with Known Cross Sections - Rasha Tarek, Staples High School, CT

Students often struggle with visualizing solids in 3D. This presentation will walk you through the process of creating
3D solids with known cross sections to help your students visualize them. We will start by creating the base of our
solid using any two continuous functions, then we will construct infinitely many square or triangular cross sections
that are perpendicular to the x-axis to form the solid.

8.2 Dynamic Illustrations and Validations of Geometric Theorems - Tim Brzezinski, Berlin High
School, CT

In this session, participants will have the opportunity to interact with several GeoGebra applets Âthat dynamically
illustrate definitions, concepts, theorems without words, segment lengths, and angle measures. Each applet contains a
figure that the user can modify at any time. The main tool that controls all dynamics in each applet is the slider tool.
These illustrationsÂprovide teachers with a powerful tool to foster student discovery and meaningful reinforcement of
concepts.

8.3 Real Problems with Real Pictures - Ali Heery and Rob Belevich, Southern Connecticut State
University, CT

In this presentation, we will showcase how we used real pictures to illustrate real-life problems. The activities that we
propose allow students to interact with the problem and try different strategies. Other problems can be created using
the same strategies, making the context of the problem more real and meaningful to students.

8.4 Geometric Constructions with Automatic Feedback - Jason Wofsey, Professional Childrenâ^s
School, NY

I will present several applets that ask students to perform Euclidean constructions. The applets incorporate JavaScript
with added listeners to check for the correct object and then provide affirmative feedback to students. I will explain
how teachers can create their own such exercises and how to best make use of them in the classroom. I will also show
how they can be used with the Moodle GeoGebra Quiz plugin to make automatically graded quizzes.
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8.5 Pythagoras in Converse - Hunter Smith, Engineering & Science University Magnet School, CT

In this presentation, we will look at multiple applets to explore the converse of the Pythagorean Theorem in a high
school geometry class. The applets will offer hands-on demonstrations and ways to visualize the inequality.

8.6 Graphing Surfaces with Polygon Cross Sections in GeoGebra - Doug Hoffmann, Northwestern
Community College, CT

The purpose of this presentation is to provide a method of graphing surfaces in GeoGebra with parameterizable cross
sections. Specifically, we will focus on surfaces that do not have circular cross sections. For a relatively small number
of sides, the coordinate functions are easy to code, but when the number of sides gets bigger, the piecewise functions
get troublesome to code by hand. One way around coding the coordinate functions by hand is to use a Sequence
command. For each coordinate function, a Sequence command creates a list of all the functions needed to define a
coordinate function.

8.7 A Dynamic Definition of tan(t) - Doug Kuhlman, former teacher at Andover Philips Academy,
MA

The short talk would be showing how to teach the tangent function using GeoGebra: attaching a tangent line, x = 1,
to the unit circle and then drawing a line though (0, 0) and W (t), where W is the wrapping function. tan(t) is the
second coordinate of the point of intersection of that line and the line x = 1.

8.8 Constructing Meaning in Geometry with GeoGebra - Sandra Ollerhead, Mansfield High School,
MA

GeoGebra can serve as a powerful tool to developing a deeper understanding of geometric concepts behind straightedge
and compass constructions. This presentation will show the benefits of using GeoGebra versus pencil and paper to
teach students constructions.



INTERACTIVE POSTER ABSTRACTS

9.1 Triangle Similarity Shortcuts - Rasha Tarek, Staples High School, CT

This is an interactive activity in whichÂstudents utilize their knowledge of Similar Polygons to verify the validity of
several triangle similarity shortcuts. Students will be presented with 5 different scenarios that they will investigate.
They also have the opportunity to check their understanding at the end of the activity.

9.2 Slope Field Generator - Rasha Tarek, Staples High School, CT

Generate any slope field and graph particular solutions with ease using this slope fields generator. Students can use
this worksheet to visualize solutions to certain differential equations or simply to check their work.

9.3 Graphing Polynomials Using Zeros and their Multiplicities - Janet Zupkus, Naugatuck Valley
Community College, CT

This activity uses an existing geogebra applet to direct the studentâ^s exploration of polynomial functions and graphs.
The activity explores polynomial end behavior and x-intercept behavior related to the multiplicity of factors. The
activity lends itself to a flipped classroom environment as an independent exploration prior to a classroom lecture.

9.4 Characteristics of Quadratic Graphs - Rayigam Thevaraja Mathiyalagan, Tamil Vidyalayam, Sri
Lanka

The applet is designed to help students investigate the characteristics of the graphs of quadratic functions.

9.5 Pythagorean Theorem Game - Matthew Krebs, Boston Public Schools, MA

This applet gives students the opportunity to (1) create a right triangle with the red side as the hypotenuse and (2) click
on the sides and use the Pythagorean Theorem to arrive at the length of the side that is not given. Students can opt to
click on the square root symbol to begin their work or after they have written everything else.
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9.6 Distance Game - Matthew Krebs, Boston Public Schools, MA

This applet gives students the opportunity to become comfortable with unbalanced axes. With each problem, the x and
y axes change. As a result, students must be careful to create either a vertical line or a horizontal line to measure the
appropriate length of a segment, or they must identify the length of a given segment according to the axes.

9.7 Proportions Game - Matthew Krebs, Boston Public Schools, MA

This applet gives students the opportunity to interpret problems using proportions through the creation of right triangles.
Students make a right triangle based on the first situation, then make a similar right triangle that coincides with the
second situation.

9.8 Jeopardy - Matthew Krebs, Boston Public Schools, MA

Every time a student plays this game, the applet will select a random five categories for Jeopardy, another five for
Double Jeopardy, and another one for Final Jeopardy. The applet updates every time it is being played, so the problems
will not be the same. Users get a new experience every time.

9.9 Interior Angles of Polygons - Ali Heery, Bridgeport Public Shools, CT

The applet is designed to help students make conjectures about the sum of the interior angles of polygons based on the
number of triangles that can be built inside the polygon.

9.10 The Ambiguous Case - Ella Sayin, Southern Connecticut State University, CT

The applet is designed to help students learn about the ambiguous case of the law of sines.

9.11 Non-coplanar “Quad” Midpoints - Tim Brzezinski, Berlin High School, CT

Many geometry teachers and students are familiar with the theorem that states that the (four coplanar) midpoints of the
segments of any quadrilateral form the vertices of a parallelogram. However, did you know this statement also holds
true for any four non-coplanar points? That is, if segments are consecutively connected among 4 non-coplanar points,
consecutive midpoints of these segments will always be vertices of a parallelogram!

9.12 9-point Circle Action (Part 1) - Tim Brzezinski, Berlin High School, CT

For any triangle, there are 9 special points that all lie on a circle (The midpoints of the triangleâ^s 3 sides, the points at
which the triangleâ^s 3 altitudes meet the lines containing the triangleâ^s 3 sides, and the midpoints of the segments
that connect the triangleâ^s orthocenter to each of its 3 vertices). This applet dynamically illustrates without words,
segment lengths, or angle measures that the center of this 9-Point Circle is the midpoint of the segment that connects
the triangleâ^s circumcenter and orthocenter.

9.13 Hexagonal Napolean Theorem? - Tim Brzezinski, Berlin High School, CT

If equilateral triangles are constructed off the 6 sides of any hexagon (convex or concave), then the midpoints of the
segments that connect the centroids of an â^opposite pairâ^ of equilateral triangles will always form vertices of yet
another equilateral triangle. (There are 3 such segments, seeing that there are 6 equilateral triangles.) Would you
consider this to be a version of Napoleanâ^s Theorem for a hexagon? You be the judge!
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9.14 Numerical Integration - Albert Navetta, University of New Haven, CT

This applet shows a visualization of 3 numerical integration techniques: Midpoint Rule, Trapezoid Rule, and Simpson’s
Rule. You can change the function, the number of divisions, and the limits of integration. To get the results for Simpson’s
Rule, the box must be checked. Simpson’s rule takes a lot of processing, so be patient after checking the Simpson’s
Rule box. Your browser may even indicate that the script has stopped, but it is working, just wait. If you have a
relatively new computer, it should not be a problem. Once Simpson’s rule is displayed, you can cycle through the
parabolas that make up the estimate.

9.15 Exploring Rotations - Sandra Ollerhead, Mansfield High School, MA

This applet and accompanying worksheet provide students the opportunity to develop a formal definition of rotations
as well as to explore rotations on the coordinate plane.

9.16 Exploring reflections - Sandra Ollerhead, Mansfield High School, MA

This applet and accompanying worksheet provide students the opportunity to develop a formal definition of reflections
as well as to explore reflections on the coordinate plane.


